Исследование электрохимического поведения ионов самария в хлоридных и хлоридно-фторидных расплавах
Рефераты >> Химия >> Исследование электрохимического поведения ионов самария в хлоридных и хлоридно-фторидных расплавах

Таблица N7

C(SmCl3), моль/см3(104V,

В/сi, мА/см2

первая волна-(k,

B-(/1/2k,

B0,4950,198,06

1,850

-

1,7430,1

0,252,78

82,50

1,955

1,9481,895

1,8752,120,01

0,02

0,05

0,1

0,29,38

21,88

37,50

68,31

97,491,865

1,870

1,880

1,880

1,890-

1,830

1,830

1,820

1,830

2,970,1

0,268,75

115,631,965

1,9551,910

1,870

Таблица N8

C(SmCl3), моль/см3(104V,

В/сi, мА/см2

первая волна-(k,

B-(/1/2k,

B0,4950,133,55

1,530

-

1,150,1

55,72

1,7051,5601,7430,1

101,981,9401,860

Отсутствие явного диффузионного пика на вольтамперных зависимостях на серебряном электроде свидетельствует о том, что процесс сопровождается химической реакцией, что также подтверждается видом кривой зависимости ip/V1/2 - V1/2, приведенной на рис. 4.10.

Анализ стационарных кривых по уравнению Гейровского - Ильковича дает число электронов для процесса, соответствующего первой волне, равное 1. Отсутствие анодной волны при потенциалах срыва, отвечающих первой волне катодного восстановления, говорит о том, что скорость последующей химической реакции значительно больше скорости развертки потенциала. С учетом сказанного можно записать уравнения электродных процессов, протекающих на первой волне катодного восстановления:

Sm3+ + e ( Sm2+ ( 1 )

2Sm2+ ( Sm3+ + Sm0 ( 2 )

На второй волне катодного восстановления происходит восстановление иона Sm3+ до металлического самария, что подтверждается появлением анодного пика при потенциалах возврата, отвечающих второй волне катодного восстановления:

SmCl63- + 3e ( Sm0 + 6Cl- ( 3 )

(существование иона Sm3+ в хлоридных расплавах при концентрациях SmCl3 0-15 мол.% в виде комплекса SmCl63- подтверждено авторами [ 29 ]).

Разность потенциалов катодной и анодной волн значительно превышает величину 2,3RT/nF, что указывает на необратимость процесса.

Анализ вольтамперных кривых на платиновом электроде позволяет сделать вывод о необратимом характере восстановления. Лимитирующей стадией процесса при скоростях поляризации (0,1 В/с является диффузия ионов к поверхности электрода. Подтверждением тому является прямо пропорциональная зависимость ток электровосстановления от концентрации SmCl3 в расплаве, приведенная на рис.4.11.

В области потенциалов -(1,0-1,5)В, соответствующей предволне в катодной части кривой, происходит сплавообразование с материалом электрода.

Анализ вольтамперных зависимостей хлоридно - фторидных расплавов позволяет сделать вывод об образовании фторидных и хлоридно - фторидных комплексов и стабилизации высшей степени окисления самария (+3):

SmCl63- + xF- ( [SmCl6-xFx]3- + xCl- ( 4 )

где x= 0-6.

SmCl63- + 6F- ( SmF63- + 6Cl- ( 5 )

На это указывает исчезновение второй волны катодного восстановления на серебряном электроде при увеличении концентрации фторид-иона в расплаве, т.е. имеет место трехэлектронный процесс, описываемый уравнением:

Sm3+ + 3e ( Sm0 ( 6 ).

рис. 4.10.

Зависимость тока пика от скорости поляризации. Катод - Ag.

рис. 4.11.

Зависимость тока электровосстановления от концентрации SmCl3 в расплаве. Катод - Pt.

5. Выводы.

1. Отработана методика получения безводного трихлорида самария.

2. Изучен механизм электровосстановления иона самария в хлоридных и хлоридно-фторидных расплавах.

3. Показано, что для серебряного электрода в хлоридных расплавах процесс восстановления протекает в две стадии, первая из которых осложнена последующей быстрой обратимой химической реакцией. В целом процесс электровосстановления необратим.

4. На платиновом электроде процесс необратимый и носит диффузионный характер при малых скоростях поляризации; в области потенциалов, соответствующих предволне, имеет место сплавообразование с материалом электрода.

5. В хлоридно - фторидных расплавах процесс электровосстановления необратим и одностадиен.

6. Список использованной литературы.

1. Thoma R.E., Karraken R.H. Ibid., 5, 1933 (1966).

2. Thoma R.E. et al. Inorg. Chem., 2, 1005 (1963).

3. Barton C. J., Redman J.D., Stehlow R.A. J. Inorg. Nucl. Chem., 20, 45 (1961).

4. Thoma R.E., Jusley H., Herbert G.M. Ibid., 5, 1222 (1966).

5. Zachariasen W.H. Ibid., 2, 388 (1949).

6. Zachariasen W.H. J. Amer. Chem. Soc., 70, 2147 (1948).

7. Zachariasen W.H. Acta Cryst., 4, 231 (1951).

8. Seards D.R. U.S. Report ORNL - 4076, p. 11 (1966).

9. Дергунов Е.П. "Докл. АН СССР", 85, 1025 (1952).

10. Буналов Г.А., Бабаева Е.П. "Ж. неорг. химии", 11, 337 (1966).

11. Brunton G.D. et al. U.S. Report ORNL - 3761 (1965).

12. Дергунов Е.П. "Докл. АН СССР", 60, 1185 (1948).

13. Bode H., Voss E. Z. Anorg. Chem., 290, 1 (1957).

14. Hoppe R. Частное сообщение (1967); Rodden K. Theses Westfalischen, Wilhelms Universitat, Munster (1963).

15. Браун Д. "Галогениды лантаноидов и актиноидов", - М., Атомиздат, 1972 - 272с.

16. Баев А.К., Новиков Г.И. "Ж. неорг. химии", 1961, 6, 11, 2610.

17. Коршунов Б.Г., Дробот Д.В. "Ж. неорг. химии", 1964, 9, 1, 222.

18. Дробот Д.В. и др. "Труды II Всесоюзного совещания по физ. химии расплавленных солей", Металлургия, М., 1985, с. 85, ЖНХ, 1965, т.10, с. 1675.

19. "Диаграммы состояния металлических систем", 1965 - 127с.

20. Делимарский Ю.К., Барчук Л.П. "Прикладная химия ионных расплавов", Киев, Наук. Думка, 1988 - 192с.

21. Простаков М.Е., Пырина В.К., Кочергин В.П. "Комплексообразование в расплавленных смесях фторидов K, Y, La, Nd и Gd". В кн. "VI Всесоюзная конференция по физ. химии ионных расплавов и тв. электролитов"; Тезисы докладов, ч.1, Киев, Наук. Думка, 1976.

22. Ковалевский В.А. "Физико-химические процессы в хлоридных расплавах, содержащих РЗЭ", в кн. "Тезисы докладов IX Всесоюзной конференции по физ. химии и электрохимии ионных расплавов и твердых электролитов", Свердловск, 1987, т.1, с. 77 - 78.

23. Forhmann R., Schneider A. A chemie der selteren erden in geschmalzenen alkalichloriden. Schmelzen von alkalichloriden mit der lantaniden PrCl3 bis YbCl3. Z. Anorg. und Allg. Chem., 1969, 367, H1/2, s. 27 - 33.

24. Савин В.Д., Михайлова Н.П. "Взаимодействие хлоридов РЗЭ с хлористым калием в расплавах".- В кн. "III Урал. науч. семинар по хим. реакциям и процессам в расплавах электролитов"; Тезисы докладов, Пермь, 1982, с. 10 - 12.

25. Серебренников В.В., Алексеенко Л.А. "Курс химии РЗЭ (Sc, Y, лантаноиды)", Томск, Изд-во Томского ун-та, 1963.

26. Кулагин Н.М., Лапшев Д.М. и др. "Тетрадный эффект в электропроводности трихлоридов РЗМ", в кн. "Тезисы докладов IX Всесоюзной конференции по физ. химии и электрохимии ионных расплавов и твердых электролитов", Свердловск, 1987, т.1, с. 79 - 80.

27. Спицын В.И., Вохлиш В.Г., Ионова Г.Б. Ж. неорг. химии, 1983, т.28, вып.4, с. 819 - 829.


Страница: