Исследование электрохимического поведения ионов самария в хлоридных и хлоридно-фторидных расплавах
Рефераты >> Химия >> Исследование электрохимического поведения ионов самария в хлоридных и хлоридно-фторидных расплавах

Методика получения безводного SmCl3 .

Получение безводных галогенидов РЗЭ, особенно хлоридов- задача непростая. Стабильность оксигалогенидов в ряду РЗЭ повышается с увеличением порядкового номера. В связи с этим особенно большие трудности возникают при получении безводных хлоридов тяжелых РЗЭ.

Трифториды Sc, Y и лантаноидов можно получить с помощью нескольких относительно простых методов и фторированием металла или карбида. Три наиболее распространенных метода, подобных по природе, таковы:

1) прямое гидрофторирование оксида [ 57-59 ]:

700(C

Ln2O3 + 6HF ( 2LnF3 + 3H2O ( 28 )

2) реакция между оксидом и бифторидом аммония [ 57, 58, 60, 2, 4, 1, 61 ]:

300(C

Ln2O3 + 6NH4HF2 ( 2LnF3 + 6NH4F + 3H2O ( 29 )

3) дегидратация гидрата трифторида, полученного осаждением из водного раствора [ 57-59, 62-65 ]

MeF3(xH2O ( MeF3 + xH2O ( 30 )

(x= 0,5(1) (300(C в вакууме или 600(С в атмосфере HF)

При взаимодействии между трихлоридом итрия или полуторной окисью и фтором [ 66 ], образуется трифторид худшей чистоты. ClF3 даже при 800(С весьма слабо взаимодействует с оксидами лантаноидов в отсутствии влаги [ 67 ], при наличии влаги по этой реакции можно получить трифториды от La до Sm включительно, однако даже в этих условиях оксиды более тяжелых лантаноидов (Eu2O3 - Er2O3) полностью не превращаются в трифториды, а оксиды от Tm до Lu совсем не реагируют.

Установлено [ 68 ], что Sc, Y, лантаноиды от La до Sm включительно и Gd реагируют с безводным HF при 225(С в запаянных сосудах с образованием соответствующих трифторидов.

Оксиды или гидраты трихлоридов постоянно использовались в качестве исходных соединений для получения трихлоридов, хотя реакция между соответствующим металлом или гидридом металла и либо хлором, либо HСl, несомненно, является наиболее удобным методом [ 69-74 ], если металл доступен и используются подходящие реакционные сосуды, например из молибдена.

Оксиды РЗЭ непосредственно превращаются в трихлориды по реакциям взаимодействия при высокой температуре с парами CCl4 [ 75-77 ], смесями CCl4 и Cl2 [ 78-80 ], монохлоридом серы [ 81,82 ], смесями монохлорида серы с Cl2 [ 79, 80, 83-85 ],HCl [ 86, 87 ], хлористым карбонилом [ 88 ], PCl5 [ 86, 89 ], NH4Cl [ 90-93 ] или хлористым тионилом [ 94, 95 ], а также смешиванием их с углеродом и нагреванием смеси [ 96-98 ] в потоке Cl2 .

Гидраты трихлоридов лантаноидов часто использовали для получения чистых безводных трихлоридов, дегидратацию осуществляли нагреванием их в сухом HCl [ 99-104 ], хлоре [ 102 ], хлористом карбониле [ 105 ] или менее удачно на воздухе, перегонкой с хлористым тионилом [ 106 ], или нагреванием на воздухе в смеси с избытком NH4Cl [ 107 ] или лучше в вакууме [ 98, 108 ].

Из упомянутых методов приготовления трихлоридов лантаноидов (исключая методы прямого соединения элементов и действия HCl на металл) дегидратация гидратов нагреванием их в токе HCI или лучше с NH4Cl при пониженном давлении и прямое превращение оксидов нагреванием их с NH4Cl являются наилучшими методами. Дегидратация гидратов с применением HCl проводится обычно [ 101 ] в интервале температур 80-400(С; если используются значительные количества гидратов, то важно удалить большую часть воды при низкой температуре, чтобы свести к минимуму образование оксихлорида. Опубликована методика [ 109 ] превращения оксалатов La и Er в соответствующие трихлориды с помощью смеси Cl2 - CCl4 при 400-450(С.

Другие менее удачные методики заключаются в обработке сухим HCl бензоата трехвалентного лантаноида в эфире [ 110 ], хлорировании сульфида [ 111 ] или карбида [ 112 ] при высокой температуре.

Хотя многие методы, применяющиеся для получения LnCl3, приводят к образованию нечистых продуктов (если условия их получения тщательно не контролируются), тот факт, что трихлориды могут быть очищены дистилляцией, означает, что менее сложные методы такие, как нагревание смеси оксид - углерод в атмосфере Cl2 или смеси CCl4 с Cl2, можно использовать для получения сырого продукта впоследствии очищаемого вакуумной дистилляцией.

Одним из промышленных методов получения безводных хлоридов РЗЭ является обезвоживание в токе HCl при пониженном давлении ((40 мм. рт. ст.) и медленном подъеме температуры до 400(С).

Более чистый хлорид получается при обезвоживании в присутствии избытка NH4Cl в атмосфере HCl или вакууме. В ходе нагревания отгоняется NH4Cl, что препятствует образованию оксихлорида. В промышленности безводные хлориды РЗЭ получают при 190(С взаимодействием их оксидов (за исключением Pr6O11, CeO2, Tb4O7) с NH4Cl, взятом в двукратном избытке:

Ln2O3 + 6NH4Cl ( 2LnCl3 + 3H2O + 6NH3 ( 31 )

Избыточный NH4Cl удаляют нагреванием до 300-350(С в вакууме. Выход безводного хлорида 85-95% [ 113 ].

Исходя из имеющихся в наличии реактивов и аппаратуры нами выбрана именно эта методика получения безводного SmCl3 с той разницей, что для подавления гидролиза образующейся безводной соли нами взят шестикратный избыток NH4Cl. Уравнение реакции имеет следующий вид:

Sm2O3 + 6NH4Cl ( 2SmCl3 + 3H2O + 6NH3 ( 32 )

m(Sm2O3)= 5г ((Sm2O3)= 0,014 моль

m(NH4Cl)= 9,22г ((NH4Cl)= 0,172 моль

Реакционную смесь выдержали в течение 3ч при 200(С, затем температуру подняли до 350(С для удаления избытка NH4Cl, а потом образовавшийся SmCl3 переплавили в атмосфере аргона.

Также безводный хлорид самария получали дегидратацией шестиводного трихлорида нагреванием его с хлоридом аммония в вакууме по методике, разработанной авторами [ 98, 108 ].

Глава III

Исследование механизма электровосстановления ионов самария в хлоридных и хлоридно - фторидных расплавах.

Исследование процесса электровосстановления ионов Sm3+ вольтамперометрическим методом при стационарных и нестационарных режимах поляризации проводилось в трехэлектродной ячейке. В качестве индикаторного электрода применялись игольчатые серебряный и платиновый электроды. Анодом и одновременно контейнером для расплава служил стеклоуглеродный тигель. В качестве электрода сравнения применена платиновая проволока, площадь погружения в расплав которой превышала более чем на порядок площадь погружения индикаторного электрода. Вольтамперные зависимости снимались на фоне эквимолярного расплава KCl - NaCl при температуре 973К. Фоновый электролит готовили сплавлением предварительно перекристаллизованных и высушенных под вакуумом при Т = 423-473К хлоридов натрия и калия.

4.1 Вольтамперные измерения на серебряном электроде в самарийсодержащих хлоридных расплавах.

На рис. 4.1 представлены хроновольтамперные кривые расплава KCl - NaCl при последовательном добавлении трихлорида самария на серебряном электроде.

Кривая 1 представляет собой вольтамперную зависимость фонового электролита. Отсутствие волн на ней и малые значения остаточного тока при достаточно больших отрицательных потенциалах позволяет нам сделать вывод о том, что фоновый электролит не содержит каких-либо примесей.

Добавление трихлорида самария в количестве порядка 5(10-5 моль/см3 приводит к появлению на хроновольтамперной кривой двух волн восстановления: первая при потенциалах -(1,7-1,9)В, вторая - при -(2,0-2,1)В. С увеличением концентрации SmCl3 высота обеих волн растет, причем вторая волна растет более интенсивно.


Страница: