Аналогии в курсе физики средней школы
Рефераты >> Педагогика >> Аналогии в курсе физики средней школы

Энергетическая модель атома дает ряд объяснений:

а) объяснение происхождения линейчатых спектров.

Линейчатый спектр испускания объясняют переходом атома, находящегося в возбужденном состоянии, с высшего энергетического уровня на более низкий. Например, при переходе со второго энергетического уровня на первый энергия атома уменьшается на Е2-Е1=1,77 эВ; при этом испускается фотон света с длиной волны, равной

λ=

Линии поглощения в спектре атома образуются в результате перехода атома с энергетического уровня, соответствующего невозбужденному состоянию атома, на более низкий уровень за счет энергии получаемой из вне. Так как атом обладает вполне определенными, дискретными значениями энергии, то и длины волн излучаемого или поглощаемого света вполне определены. Чем больше разность энергий уровня атома, тем меньшей длины волны испускается свет.

б) Объяснение люминесценции.

Механизм флюоресценции показан на рис.6.

Рис.6.

Фотон с энергией hν15 поглощается молекулой, переводя ее из состояния с энергией Е в возбужденное состояние Е1 . Обратный переход может идти прямо (пунктирная линия) или в виде каскадного процесса, когда испускаются различные фотоны с энергиями hν54 , hν42 , hν21 , причем энергия поглощенного фотона (hν0) может оказаться меньше суммарной энергии испускаемых фотонов (hν) . Часть энергии фотона (А) передается соседним молекулам и затрачивается на различные внутримолекулярные процессы. Поэтому справедливо равенство:

hν = hν0 –A

Откуда ν < ν 0, λ > λ0 ,то есть длина волны испускаемого света при люминесценции меньше длины волны падающего света.

Фосфоресценцию наблюдают в кристаллах, где центрами свечения являются атомы, ионы или группы их. Электрон, возбужденный поглощаемым светом, нередко отделяется от центра свечения. При возвращении электрона на прежнее место свечение возобновляется. Так как скорость перемещения электрона в кристалле мала, то свечение может продолжаться длительное время.

Поэтому при изучении энергетических диаграмм полезно сопоставить их с планетарной моделью Резерфорда – Бора, обратив внимание на важные моменты:

1. В энергетической модели орбит нет, указываются лишь энергии атомов в определенных состояниях.

2. В соответствии с этим речь идет не о перескоках с орбиты на орбиту, а о переходе атомов из состояния с большей энергией в состояние с меньшей энергией (при излучении) или же наоборот (при возбуждении).

3. Расстояние между орбитами имеют геометрический смысл, а между уровнями – энергетический; поэтому говорить о скачках электрона с уровня на уровень недопустимо.

Таким образом данная аналогия помогает учащимся лучше разобраться и понять постулаты Бора и энергетическую модель атома.

ГЛАВА 3. Изучение аналогий на факультативах,

кружках и спецкурсах.

§ 8. Волчок и магнит.

Рассмотрим пример, который заключается в запуске волчка. При запуске волчка, мы любуемся его кружением, удивляемся его устойчивости и нам хочется разгадать его тайну. Почему неподвижный волчок не может стоять на острие своей оси, а приведи его в быстрое движение – и, словно перед тобой совсем другой предмет, он стойко держится, вращаясь вокруг вертикальной оси. Мало того, волчок упорно сопротивляется попыткам упорно вывести его из этого положения. Если попытаться толкнуть его, вывести волчок из вертикального положения, опрокинуть, но волчок и после толчка продолжает кружиться, описывая своей осью кони­ческую поверхность (рис. 1).

Рис.1.

Если рассмотреть опыт с вращающейся цепью и заставить ее стоять, как твердый обруч, покажется смеш­ной фантазией, но сообщите цепи быстрое вращение, надев ее на вращающийся шкив, и затем сдвиньте в сторону, дайте ей со­скользнуть на стол, и она «побежит» по столу так же, как если бы была твердым кольцом.

Механика дает объяснение этому удивительному явлению. Для этого надо знать закон сохранения момента импульса. Для вращательного движения справедлив закон сохранения момента импульса: L = Iw = const. где L — момент импульса; I — момент инерции, характеризующий инерцию вращательного движения, w — угловая скорость. Только под действием внешних сил, например трения, катящаяся цепочка может уменьшить скорость враще­ния и тогда, потеряв форму, упадет на стол. То же относится и к волчку.

Мы познакомились с одним свойством волчка—сохранением направления оси волчка. Обратимся ко второму важному его свойству. Лучше всего оно обнаруживается в следующем опыте (рис. 2).

Рис.2.

Сплошная латунная шайба К. с утолщенным ободом надета на стальную ось А, вокруг которой она может вращаться внутри латунного кольца . Если намотать на ось шнурок и бы­стро потянуть его, то шайба придет в быстрое вращение. При­лив D на кольце R имеет снизу углубление, которым весь волчок может быть надет на стальное острие штатива. Если при этом не поддерживать прибор рукой, то он под действием силы тяже­сти опрокинется и упадет. Если же, прежде чем убрать руку, привести прибор во вращение, то ось волчка с его кольцами как бы повиснет в горизонтальном положении, причем вся система будет поворачиваться вокруг вертикальной оси штатива. Это вращение получило название прецессии. Прецессия возникла как результат действия силы тяжести и стремления вращающегося волчка сохранять направление оси.

В 1852 г. французский физик Фуко обнаружил, что горизон­тальная ось вращающегося волчка устанавливается в направле­нии север — юг, подобно магнитной стрелке компаса. С той раз­ницей, что ось волчка устанавливается в плоскости географиче­ского меридиана, а стрелка компаса в плоскости магнитного ме­ридиана, который, как известно, не совпадает с географическим.

Объясним это удивительное свойство волчка. Для простоты представим, что наш гироскоп расположен на экваторе в точке А (рис. 3), причем его ось ориентирована с востока на запад. Так как Земля вращается, то через некоторое время точ­ка А перейдет из положения 1 в положение 2. Ось гироскопа, как мы знаем, стремится сохранить прежнее направление, но действие силы тяжести приводит ее снова в горизонтальное по­ложение. Совместное действие силы тяжести и вращения вызы­вает прецессию. Ось поворачивается до тех пор, пока не устано­вится параллельно земной оси, в плоскости меридиана с севера на юг. После этого прецессия прекращается, так как при про­должающемся вращении Земли ось гироскопа будет перемещать­ся параллельно самой себе, а прецессия наблюдается при попыт­ке изменить направление оси. Все вращающиеся тела, например маховые колеса двигателей, стремятся повернуть свои оси по на­правлению к Полярной звезде.


Страница: