Аналогии в курсе физики средней школы
Рефераты >> Педагогика >> Аналогии в курсе физики средней школы

Затем рассматривается использование транзистора как усилителя мощности. При этом рассматривают два случая: включение транзистора по схеме с общей базой (рис. 3, а) и общим эмиттером (рис. 3, б). Схему с общим коллектором не рассматривают, поскольку она мало чем отличается по действию от схемы с общим эмиттером. Поясняют распределение си­лы тока между эмиттером, базой и коллектором.

Усиление мощности можно осуществлять двумя способами:

а) при постоянном напряжении увеличивать силу тока,

б) при постоянной силе тока увеличивать напряжение.

Сначала рассматривают усиление мощности транзистора по току в схеме с общей базой (рис.3,а). Механизм этого процесса обсуждался при изучении правого p-n-перехода и поэтому усилительное действие в данном случае основано на равенстве Iк=Iэ. Затем переходят к изучению усиления по току в схеме с общим эмиттером, рис3,б (Iк=Iэ+Iб). Сущность процесса состоит в усилении рекомбинации дырок в базе путем подачи напряжения на эмиттерный и базовый входы транзистора. Демонстрацию осуществляют следующим образом. Насос «эмиттерного перехода» переключают так, чтобы он перемещал жидкость против часовой стрелки. Тогда одна часть жидкости от крана поступит по каналу «эмиттера» в полость «транзистора», а другая часть начнет всасываться насосом и перемещаться к «базе». Далее включают насос «коллекторного перехода» (перемещают воду по часовой стрелке) так, чтобы токи в «базе» были направлены в сторону аналога транзистора. Таким образом, возникнет значительный поток воды на выходе из «базы», который будет воздействовать на струю жидкости, вытекающую из «эмиттера», направляя ее в «коллекторный переход».

Усиление мощности по напряжению основано на различии сопротивлений коллекторного и эмиттерного p-n-переходов, включенных в противоположных направлениях. Эмиттерный переход, на который подано прямое напряжение смещения, имеет малое сопротивление, и падение напряжения на нем Us мало. На коллекторный же переход подается обратное напряжение смещения, и сопротивление его значительно больше, поэтому в коллекторную цепь может быть включена высокоомная нагрузка, сопротивление которой Rн значительно больше сопротивления эмиттерного перехода. Поскольку Iк и Iэ одинаковы, то падение напряжения на высокоомной коллекторной нагрузке Uн=IкRIэRн окажется много больше падения напряжения на эмиттерном переходе.

Для демонстрации явления можно воспользоваться моделью, собранной так, чтобы насосы вращались в одну сторону. Поочередно беря трубки 5 разного диаметра, демонстрируют роль нагрузки в цепи коллектора для усиления мощности.

§ 6 Изучение электрических цепей с использованием аналогии.

1. Цепь постоянного тока.

При введении понятия об электрическом токе полезна аналогия с течением воды в турбине. Аналогия становится особенно образной, если к этому времени введено понятие об электроне, тогда электрический ток представляется как упорядоченное движение электронов в проводнике. Весьма полезна гидродинамическая аналогия и при знакомстве с источникоми тока. На полюсах источника тока создается напряжение. Заряды (электроны, ионы), которые перемещаются в проводниках (металлах, электролитах), имеются в самих проводниках. Они движутся хаотически, но если проводник присоединить к полюсам источника тока, то заряды придут в упорядоченное движение, то есть появится ток.

Поэтому здесь целесообразна аналогия источника тока с насосом. В гидродинамической системе (рис.1) насос не создает воду, а лишь вызывает ее перемещение.

рис.1

Аналогично насосу и действие источника тока в электрической цепи. Насос создает разность давлений (напор), что может быть аналогом напряжения. Турбина аналогична потребителю, насос - источнику тока, трубки с водой – соединительным проводам, а кран – выключателю.

Приведем схему установки и ее работу, предложенную С. Е. Каненецким и Н.Н. Солодухиным.

Установка для демонстрации гидродинамической аналогии электрической цепи состоит из центробежного насоса с электродвигателем 1, водяной турбины 2, манометра 3, расходомера 4, соединительных резиновых трубок 5 и кранов 6 и 7 (рис.2).

рис.2.

В начале установку собирают без расходомера и манометра. Число оборотов двигателя регулируют реостатом, в результате центробежный насос создает разный напор воды.

Водяная турбина состоит из плексигласа (рис.3).

рис.3.

Вода в нее поступает через сопло 1 вверху турбины, приводит в движение ротор 2 и выходит через отверстие 3. Ось ротора установлена в подшипниках и вращается с малым трением. При увеличении числа оборотов двигателя увеличивается напор воды и ротор турбины вращается быстрее. К турбине присоединяют манометр через специальные трубки 4, имеется кран 5. Сбоку турбины укреплен металлический стержень 6, с помощью которого ее устанавливают на лабораторном штативе. Для герметичности турбины между корпусом и крышкой поставлена резиновая прокладка.

В расходомере (изготовленном из плексигласа) имеется канал, по которому протекает вода, приведенная в движение насосом. В канале перпендикулярно дв

ижущемуся потоку расположена площадка, соединенная со стрелкой расходомера. Укрепляют расходомер на специальном штативе с помощью вертикального стержня. С другими приборами он соединен резиновыми трубками. Вверху расходомера имеется отверстие, закрепленное винтом, необходимым для выпуска воздуха при заполнении системы водой.

Демонстрации с установкой сводятся к следующему. Когда установка состоит из насоса и трубки (рис.4) демонстрируют циркуляцию воды, аналогичную движению зарядов в электрической цепи.

рис.4.

Поочередно закрывая краны, показывают, что краны можно установить в любом месте. Аналогично этому в электрической цепи можно установить где угодно выключатель.

Когда установка собрана с расходомером (рис.5) изменяют число оборотов двигателя (меняют напор воды) и стрелка расходомера сильно отклоняется. Сжимая в любом месте резиновую трубку, показывают изменение потока воды при одном и том же напоре.


Страница: