Стандартизация измерения рН в неводных средах. Методы определения рН стандартных буферных растворов
Рефераты >> Химия >> Стандартизация измерения рН в неводных средах. Методы определения рН стандартных буферных растворов

В-третьих, окраска индикатора изменяется в зависимости от ионной силы раствора.

В-четвертых, многие индикаторы реагируют с белками, поэтому в бел­ковых системах, в биологических средах индикаторный метод может при вести к так называемым белковым ошибкам.

Возвратимся к основному вопросу — к определению единой кислот ности. Согласно Гамметту, окраска одного индикатора изменяется в различных растворителях только в связи с изменением абсолютной кислотности растворов, а константа индикатора основания в любом растворителе остается неизменной. Соотношение основной и кислой форм индикатора изменяется только в связи с изменением кислотности раствора. Свою функцию кислот­ности Гамметт обозначает Н0, так как индикаторы основания не имеют электрического заряда. По Гамметту

Н0=pKa+lg(cB/cBH+) (2.4.3)

где pKa - показатель константы диссоциации индикатора как катионной кислоты в воде. Эта константа принимается неизменной.

В дальнейшем были введены другие функции кислотности. В тех слу­чаях, когда применяется в качестве индикатора незаряженная кислота и соответствующее ей основание имеет отрицательный заряд, функцию кислотности обозначают Н(-).

Метод Гамметта чрезвычайно прост и не связан с измерением потен­циалов, не имеет осложнений в связи с возникновением потенциалов на границе двух фаз. Поэтому он представляет значительный интерес и нашел широкое применение.

Однако последние работы показали, что нет оснований считать, что в действительности величина Н0 передает кислотность неводных растворов. Предположение о том, что константа индикатора не изменяется при переходе от растворителя к растворителю, очень сомнительно.

Предположение Гамметта о неизменности констант кислотности индикаторов-оснований равносильно предположению, что константы кислотности оснований выражены через абсолютные активности, отнесенные к водному раствору как к стандарту.

Искомой величиной является абсолютная активность ионов лиония аМН+ отнесенная к водному раствору протонов (ионов гидроксония) как к стандарту. Константа кислотности основания через абсолютные активности выразится так:

КАосн=аВ+(М)(aB/aBH+) (2.4.4)

Заменив в уравнении (2.4.4) величины aB и aBH+ выражениями a=cполучим:

KAосн=аH+(M)(cB (2.4.5)

где аH+(M) искомая абсолютная активность сольватированного протона, отнесенная к его состоянию в бесконечно разбавленном, водном растворе.

На основании уравнения (2.4.5) для КАосн запишем выражение для рКА:

pKA=-lgKAосн=-lgaH+(M)(cB (2.4.6)

Подставив это выражение в уравнение (2.4.3), получим:

(2.4.7)

Предположение Гамметта будет действительно правильным, если ока­жется, что Н0 будет равно только логарифму активности протонов в данном растворителе, отнесенному к единому стандартному состоянию, т. е. к бес­конечно разбавленному водному раствору. Но для этого нужно, чтобы выра­жение было равно нулю.

Упростим нашу задачу: представим, что растворы настолько разбавлены, что отношение концентрационных коэффициентов активности единице. Но и тогда в выражении остается отношение единых коэф­фициентов активности ; они не зависят от концентрации. В этом случае выражение для Н0 примет вид:

Н0= (2.4.8)

Из этого выражения следует, что Н0 не равно логарифму активности протона, а отличается от него на величину логарифма отношения коэффициентов активности заряженной и незаряженной форм индикатора т. е. зависит от того, какова энергия взаимодействия с растворителем иона и нейтральной молекулы индикатора. При стандартизации по отношению к бесконечно разбавленному водному раствору величины и определяются работой переноса ионов ВН+ и соответственно молекул В из среды М в воду. Таким образом, предположение, что Н0 равно -lgaH+(M) будит справедливо только в том случае, если влияние растворителя на катион основания и молекулу основания индикатора одинаково.

Но все количественные данные, имеющиеся по этому поводу, говорят о том, что это не так.

Шварценбах пытался сравнить ход изменения величины Н0 и величины Н(-) в зависимости от свойств растворителей. В соответствии со сказанным ранее величина Н(-) будет выражена через единые коэффициенты активности так: (2.4.9)

По Шварценбаху, аналогия заключается в том, что коэффициенты активности и ,так же как и коэффициенты активности и представляют коэффициенты активности веществ, отличающихся только одним зарядом.

Предположение Шварценбаха сводится к тому, что отношение коэффициентов / равно отношению /

Оказалось, что это далеко не так. Исследование этих функции кислотности в 0,002 н. раствора НС1 в смесях спирта с водой показало для функции Н0 иную зависимость от содержания спирта, чем для функции Н(-). Следовательно, Н(-) не передает истинной кислотности раствора. Появление заряда на молекуле осложнит в результате присоединения протона вызывает также резкое изменение энергии взаимодействия незаряженной молекулы индикатора и ее иона с растворителем. Все это говорит о том, что нельзя приравнивать изменение H0 к изменению кислотности. Задача может быть решена, если будут известны для В и ВН+, только тогда Н0 можно исправить и найти истинную величину -lg аН+(М).

Таким образом, ни Н0, ни Н(-) не оценивают правильно единую кислотность растворов.

Очень существенным недостатком метода Гамметта является также необходимость использования нескольких индикаторов при определении кислотности. Согласно теории индикаторов, заметить изменение окраски, по которой судят об изменении Н0, можно только тогда, когда будет присутствовать не меньше 10% одной формы индикатора в присутствии 90% другой; можно заметить окраску вещества ВН+, когда оно будет составлять более 10% от вещества В, и наоборот. С помощью одного индикатора можно определить изменение кислотности только в пределах 2 единиц рН и Н0.


Страница: