Термодинамика химической и электрохимической устойчивости медно-никелевых сплавов
Рефераты >> Химия >> Термодинамика химической и электрохимической устойчивости медно-никелевых сплавов

где i, j – степени окисленности оксидов металла, для которых существуют наиболее достоверные термодинамические данные, х – степень окисленности неизвестного оксида.

Hаиболее достоверные термодинамические данные для никеля получены только для оксида NiO: . Данные для оксида Ni2O3 получены расчётным путём: . Поскольку для гипотетического оксида NiO1,5 энергия Гиббса образования вдвое меньше, то [13].

Таким образом, и формула (2.29) преобразуется к виду

(2.30),

А в нормальных условиях (2.31).

Подставляя (2.31) в (2.27) и решая уравнение с учётом (2.28), можно найти значение х, соответствующее максимальной степени окисленности никеля в оксиде, который может образоваться в нормальных условиях:

х=1,346.

Таким образом, окисление медно-никелевых сплавов на воздухе заканчивается образованием CuO и нестехиометрического соединения NiO1,346.

2.5 Оценка области гомогенности фазы NiOx при различных температурах в равновесии с атмосферным воздухом

Используя уравнения (2.27), (2.28) и (2.30) можно оценить область гомогенности фазы NiOx при различных температурах в равновесии с атмосферным воздухом, то есть найти значение х, соответствующее максимальной степени окисленности никеля в оксиде, который может образоваться на воздухе при различных температурах.

Для этого нужно знать температурные зависимости стандартных энергий Гиббса образования соединений NiO и NiO1,5.

Для соединения Ni2O3 имеются только данные о стандартныx энтальпии и энтропии образования [13]:

.

Поэтому стандартную энергию Гиббса образования можно рассчитать только приближённо, предполагая, что и не зависят от температуры.

(2.32)

Все необходимые исходные данные для расчёта стандартной энергии Гиббса образования NiO представлены в табл. 2.2 – 2.3.

(2.33),

(2.34),

(2.35),

Подставляя (2.34) и (2.35) в (2.33):

(2.36)

Причём:

(2.37),

(2.38).

Поскольку (2.39), то

(2.40),

(2.41).

Результаты расчётов стандартных энергий Гиббса образования NiO и NiO1,5, а также зависимостей стандартных энергий Гиббса образования NiOx от х представлены в табл. 2.6.

Табл. 2.6. Стандартные энергии Гиббса образования оксидов никеля при различных температурах

T, K

100

-201905

-451030

-225515

200

-211430

-425460

-212730

273

-211775

-406794

-203397

298

-211430

-400400

-200200

400

-208650

-374320

-187160

500

-204977

-348750

-174375

Рассчитанные значения х, соответствующие максимальной степени окисленности никеля в оксиде, который может образоваться на воздухе представлены в табл. 2.7.

Табл. 2.7. Значения х при различных температурах

T, K

100

200

273

298

400

500

x

1,939

1,505

1,377

1,346

1,232

1,143


Страница: