Методические особенности изучения темы Подобные треугольники в средней общеобразовательной школеРефераты >> Педагогика >> Методические особенности изучения темы Подобные треугольники в средней общеобразовательной школе
Определение. Гомотетичными называются фигуры
и
=
.
1) Гомотетичные точки М и М/ лежат на одной прямой с центром гомотетии О.
2) Точки М и М/ лежат по одну сторону от центра О, если k>0, и – по разные стороны, если k<0.
3) М/N/= |k|MN.
4) Гомотетия плоскости является при:
k=1-тождественным преобразованием;
k=-1-центральной симметрией.
Формулы гомотетии с центром в начале координат:
,
Если центр гомотетии имеет координаты S(x0, y0), то формулы гомотетии с центром S имеют вид:
,
Если введем обозначения
,
то получим формулы
,
Основное свойство гомотетии.
Для любых точек М, N и их образов
,
имеет место равенство:
.
Доказательство. Воспользуемся равенствами:
,
,
,
и найдём
.
Следствия.
1) Гомотетия с коэффициентом
является преобразованием подобия с коэффициентом подобия
, так как из основного свойства следует
или
.
2)
, если k>0, и
, если k<0.
3) Гомотетия плоскости обладает всеми свойствами преобразования подобия, в частности: прямую отображает в прямую, параллельные прямые - в параллельные прямые, Изменяет все расстояния в одном и том же отношении, сохраняет углы.
Характерные свойства гомотетии.
Гомотетия плоскости имеет одну неподвижную точку – центр гомотетии.
Гомотетия плоскости отображает прямую, проходящую через центр гомотетии, в себя.
Гомотетия плоскости (
) отображает прямую, в параллельную ей прямую, так не проходящую через центр гомотетии.
Гомотетия плоскости отображает окружность, центр которой совпадает с центром гомотетии, в концентрическую окружность. При этом радиусы окружностей связаны соотношением
.
Всякие две неравные окружности гомотетичны друг другу, при этом, если окружности не являются концентрическими, существуют две гомотетии, отображающие одну из них в другую.
![]()
![]()
![]()
Гомотетия плоскости является преобразованием подобия первого рода.
Теорема. Всякое преобразование подобия с коэффициентом подобия k можно представить как композицию гомотетии и движения.
1.5 Группа преобразований подобия и её подгруппы
Теорема 1.Множество всех преобразований подобия плоскости есть группа преобразований, называемая группой подобий.
Доказательство.
Если
и
- преобразования подобия с коэффициентами
и
, то
- преобразования подобия с коэффициентом
. Действительно
является преобразованием плоскости. Докажем, что для любых двух точек M и N и их образов
,
Выполняется равенство
. Обозначим
и
, тогда
,
. По основному свойству преобразования подобия
,
. Поэтому
и композиция
является преобразованием подобия.
Пусть
– преобразование подобия плоскости. Так как
изменяет всё расстояние в отношение
, то обратное к нему преобразование
изменяет все расстояния в отношении
.
Следовательно,
- преобразование подобия с коэффициентом
.
