Математические основы теории систем
Рефераты >> Математика >> Математические основы теории систем

Задачи 2 и 3 касаются динамического режима, так как компенсация изменяющихся возмущающих воздействий, необходимая для стабилизации, сравнение параметров процесса с изменяющимся задающим воздействием, а также перестройка при переходе от одного режима в другой, могут быть решены только с учетом динамических характеристик процесса. Отсюда следует, что здесь идет речь об управлении в динамическом режиме.

В качестве основы для отыскания решения и оценки качества приложенной схемы управления используем количественную меру. Она выражается целевой функцией. При решении проблем 1 и 3 может быть использовано время T, в течении которого автоматическая система компенсирует скачкообразное возмущающие воздействие с точностью до заданной допустимой погрешности или в течении которого будет осуществляться процесс перехода в новое состояние. Время T при этом характеризует качество автоматического управления. При решении проблемы 1 можно использовать интеграл от абсолютной ошибки, представляющий разность между заданными и действительными значениями регулируемой величины в том случае можно говорить о функции ошибки.

В зависимости от того, что выражает целевая функция (качество или прибыль, ошибку или стоимость), цель к которой надо стремится, состоит в том, чтобы изменять регулируемые величины или свободные параметры в пределах допустимых или возможных границ так, чтобы целевая функция имела максимальное или минимальное значение. Таким образом, мы получим оптимальное управление. В других случаях, например, при отсутствии полных сведений о процессе или с целью снижения затрат на аппаратуру и вычислительные устройства, можно ограничиться субоптимальным, удовлетворяющим уравнением.

МАТРИЧНЫЙ ФОРМАЛИЗМ В ТЕОРИИ СИСТЕМ.

ЛИНЕИНЫЕ ОПЕРАТОРЫ.

Рассмотрим линейное n - мерное пространство Un. Пусть задано правило, которое ставит в соответствии произвольному вектору X пространства Un определенный вектор Y того же пространства. В этом случае вектор X называется прообразом, а вектор Y - образом вектора X. Это правило называется преобразованием пространства Un или оператором, заданном в пространстве Un.

Преобразования (операторы) будем условно обозначать буквами А,В,С, . Например можно написать, что:

(1) АХ=Y

Равенство (1) читается так: преобразование (оператор) А, примененное к вектору Х, ставит ему в соответствие вектор Y.

Преобразование (оператор) называется линейным преобразованием (линейным оператором), если выполнено условие:

(2) A(Х+Y)=АХ+АY

(3) А(ℷХ)=ℷ(АХ), где ℷ- произвольное число

таким образом, линейное преобразование переводит сумму векторов в сумму их образов, а произведение вектора на число в произведение образа того вектора на это же число.

ИНВАРИАНТНОЕ ПОДПРСТРАНСТВО.

Пусть Х n - мерное линейное пространство и у=Ах -линейное преобразование на пространстве Х. Пусть X1∈X является некоторым подпространством Х, обладающим однако, тем свойством, что если х∈Х1, то и у=Ах∈Х1. Подпространство Х1, обладающее подобными свойством, называют инвариантным относительно линейного преобразования у=Ах.

Особенно интересны одномерные инвариантные пространства, представляющие собой прямые в пространстве Х, проходящем через начало координат.

Если х - произвольная точка пространства Х α - ве[ВЮЮ1] [ВЮЮ2] щественная переменная, меняющаяся от -∞ до +∞, то dx будет представлять собой одномерное подпространство Х, проходящее через х(при α =0), как показано на рисунке 2.

x2

3

dx

2 x1

Такое одномерное подпространство будем обозначать R1. Предположим, что среди бесконечного множества одномерных пространств R1 найдутся такие, которые инвариантны относительно у=Ах, т.е. для любого x∈R1, имеет место у=Ах∈R1.

Обозначим через ℷ отношение у к х, которое при этом будет просто вещественным числом, т.е. можно записать у=ℷх, таким образом если R1 -инвариантное пространство, то для х∈R1 имеет место равенство:

(4) Ах=ℷх

Вектор х≠0, удовлетворяющий соотношению (4) называют собственным вектором матрицы А, а число ℷ - собственным значением матрицы А.

Для определения характеристических чисел матрицы перепишем соотношение (4) в ином виде, введя тождественное преобразование х=Iх. При этом получим:

(5) (А-ℷI)х=0

Соотношение (5) представляет собой систему линейных однородных уравнений, которая может быть записана в явном виде как:

(a11-ℷ)x1+a12x2+ .+a1nxn=0;

(6) a21x1+(a22-ℷ)x2+ .+a2nxn=0;

.

an1 x1+an2x2+ .+(a nn-ℷ)xn=0;

Матрица вида (А-ℷI) (6) называется характеристической матрицей А. Определитель характеристической матрицы называется характеристическим многочленом матрицы А. Корни характеристического многочлена матрицы называются характеристическими числами этой матрицы. Из свойств решения уравнения (6) нетривиальное решение (отличное от нуля) возникает только тогда, когда имеется бесчисленное множество решений:

(7) det(A-ℷI)+a0ℷn+a1ℷn-1+ +an-1ℷ=0

Подставив любое собственное значение в исходную систему уравнений (6), получим уравнение:

(8) (А-ℷiI)х=0

которое имеет непрерывное решение, так как det(A-ℷiI)=0

Это решение дает вектор хi, определяемый с точностью до скалярного множителя. Этот вектор называется собственным вектором матицы А.

Свойства:

1. Если собственные числа матрицы А различны (корни характеристического уравнения не равны), то порождаемые или собственные векторы образуют систему линейно независимых векторов.

2. Если матрица А симметрическая, то собственные числа такой матрицы всегда вещественны, а собственный вектор в матрице образует систему ортогональных векторов.

Линейные пространства, элементами которых являются, упорядоченные последовательности n-вешественных чисел называются векторами.

ДЕЙСТВИЯ НАД ВЕКТОРАМИ.

Упорядоченные последовательности из n - чисел х(1), .,х(n), могут быть записаны в виде вектор - столбца или вектор - строки;

x(1) n n

(9) х= . = x)i) ; (x(1), .,x(n))=(x(i))

x(n) 1 1

Эти числа, составляющие вектор, называются компонентами вектора.

Если один из этих векторов обозначить буквой х, то другой будем обозначать х и называть транспонированным вектором.

n

(10) х=(х(i)) =(х(1), .,х(n))


Страница: