Математические основы теории систем
Рефераты >> Математика >> Математические основы теории систем

(13) X(t)= (t,t0)C

Любая неособенная матрица, которая удовлетворяет матричному дифференциальному уравнению (12), называется фундаментальной матрицей системы (11). Таким образом, любая фундаментальная матрица имеет вид (13) при некоторой неособенной матрице С n строк любой фундаментальной матрицы есть n линейно независимых решений для уравнения (11).

th. Пусть A(t) есть квадратная матрица порядка n, элементы которой непрерывные функции времени. Пусть Ф(t,t0) есть также квадратная матрица порядка n, которая является решением уравнения

(14) d/dt Ф(t,t0)=A(t)Ф(t,t0), (t,t0)=I

Тогда решение уравнения

(15) x(t)= A(t)x(t), x(t0)=x0,

обозначаемое через x(t,x0,t0), есть

(16) x(t,x0,t0)=Ф(t,t0)x0 ∀t, ∀x0

Матрица Ф(t,t0) называется переходной матрицей состояния.

Из уравнения (16) можно сказать: матрица Ф(t,t0) есть

линейное преобразование, которое отображает состояние x0 в момент времени t0 в состояние x(t) в момент t.

СПОСОБЫ ВЫЧЕСЛЕНИЯ МАТРИЧНОЙ ЭКСПОНЕНТЫ.

t

1. Если всех t ⌡ A(Ʈ)dƮ и A(t) коммутативны, то

t0

t

Ф(t,t0)= exp ⌡ A(Ʈ) dƮ

t0

Пусть Ф(t,t0) переходная матрица для (11),определяемой выражением (14), тогда:

t

(17) det Ф(t,t0)= exp ⌡ a(Ʈ) dƮ , где

t0

n

a(Ʈ) ≜ ∑ aiƮ(Ʈ) ≜ trA(Ʈ).

i=1

2. Законченное решение позволяет получить формула интерполяции Лагранжа-Сильвестра. Она применима к матричным функциям, которые могут быть представлены в виде (сходящихся) степенных рядов.

f(A)= ∑ CiAi ,где

0

матрица А с n отличающимися друг от друга собственными значениями соответствующих формуле интерполяции Лагранжа для аппроксимации функций с помощью многочленов. Матрица перехода Ф=exp{At} представляет такой степенной ряд

n

(18) Ф(t)= eAt= ∑ eℷitFi , где

i=1

n

F=П (A-ℷiI)/(ℷi-ℷj)

j=1

j≠i

3. Применение преобразования Лапласа к однородному дифференциальному уравнению вида q=Aq, позволяет получить формулу, похожую на формулу Сильвестра, которую можно использовать не только для случая с простыми корнями.

(19) Ф(t)= eAt≜ ∑ Aiti/i!= I+At+A2t2/2!+ .

i=1

Эта формула особенно пригодна для аналитических исследований.

4. С помощью преобразования подобия матрица с n совершенно различными корнями ℷi может быть приведена к диагональной матрице Л.

Решение относительно А дает.

(20) A= KЛK-1 ,где

К - матрица собственных векторов, K≜[K1,K2, .,Kn], согласно выводу из теории матриц имеет:

для двух подобных матриц А и, Л соответствующих уравнению (20), справедливо

f(A)=Kf(Л)K-1

(21) Ф(t)=KeЛtK-1

причем, если известны корни ℷi, сразу можно записать матрицу exp{Лt}

eℷ1t 0

eЛt=

0 eℷnt

Рассмотренные способы дают решение в аналитическом виде и требуют больших затрат времени на определение собственных значений матрицы А, т.е. корней характеристического уравнения. В приведенных ниже способах оба этих момента отсутствуют.

5 При расчете матрицы перехода с помощью формулы Тейлора из (19)

p-1

(22) Ф(t)= ∑ Ai ti/t!+Rp

i=0

в системах с сосредоточенными параметрами для отдельных элементов матриц получим полиномы в функции t, которые могут быть записаны в виде сумм показательных функций e.

6. Путем программирование на аналоговой вычислительной машине элементы матрицы перехода могут быть получены в виде кривых, численно оценены или аналитически аппроксимированы.

Модуль вход-выход непрерывного объекта управления в форме векторно-матричного дифференциального уравнения

вектор входа U=[U1, U2, .,Um]T

вектор выхода x=[x1,x2, .,xm]T

вектор состояния q=[q1,q2, .,qm]T

Уравнение состояния (векторное дифференциальное уравнение)

(23) q(t)= Aq(t)+Bu(t)

Уравнение входа

(24) x(t)= Cq(t)+Du(t)

Для одномерной системы n-го порядка эти уравнения упрощаются:

(25) q(t)=Aq(t)+bu(t)

(26) x(t)=CTq(t)+du(t)

(27) q1 = a11 a12 q1 + b1 U; при n=2

q2 a21 a22 q2 b2

(28) x=|C1 С2| q1 + dU

q2

Таким образом, векторное дифференциальное уравнение (25) служит компактной формой записи для системы из n скалярных дифференциальных уравнений первого порядка

(29) q = a11q1+a12q2+b1U;

q = a21q1+a22q2+b2U.

Уравнение входа для одномерной системы представляет собой скалярное алгебраическое уравнение

(30) x= c1q1+c2q2+dU

ВЕСОВАЯ ФУНКЦИЯ.

Прежде всего нужно определить выходной сигнал xv(t), соответствующий входному сигналу Uv(t)

(31) Uv(t)=U(V)dV δ(t-V)

U(V)dV - площадь импульса

δ(t-V)- единичный импульс при t=V

Соответствующий этому выходной сигнал представляет реакцию на импульсное воздействие, или соответственно весовую функцию g(t-V), характеризуемую импульсами площадью U(V)d .

Если уравнения системы представлены в стандартной форме записи (23), (24), то можно использовать общую форму решения уравнения переходного процесса:

t

(32) q(t)= Ф(t)q(0)= ⌡ Ф(t-Ʈ) BU(Ʈ)dƮ= qсв(t)+qпрн(t)

0

В рассматриваемом здесь случае переходного процесса при

возмущающем воздействии и нулевых начальных условиях для выраженного в относительных единицах входного сигнала Uδ

Uδ(t)=δ(t)

получим характеристику состояния в относительных

t

(33) qδ(t)= ⌡ Ф(t-Ʈ) bδ(Ʈ) dƮ

0

Для импульса δ(Ʈ), возникающего в момент времени Ʈ=0, интервал интегрирования должен быть принят от -0

Ф(t)b , при t≥0

(34) qδ(t)=

0, при t<0

Весовую функцию находят путем подстановки (34) в уравнение выхода (26)

(35) q(t)=xδ(t)=CTqδ(t)+dUδ(t)= CTФ(t)b+dδ(t) при t≥0

Для определения элементарного выходного сигнала xδ(t), соответствующего уравнению (31), нужно учесть еще смещение входного импульса по времени и его интенсивность (площадь).

(36) xv(t)=U(V) dV g(t-V)=U(V) dV[CTФ(t-V)b+dδ(t-V)]

U(t)=U(V)dV δ(t-V)


Страница: