Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле
Рефераты >> Математика >> Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле

Смешанная задача встречается главным образом в гидродинамике. Различные приложения этих задач можно найти, например, в книге Лаврентьев И.А. и Шабат Б.В. [1].

Итак, по многочисленности и разнообразию приложений задача Дирихле занимает исключительное место в математике. К ней непосредственно сводится основная задача в гидродинамике – задача обтекания, задачи кручения и изгиба в теории упругости. С нею же тесно связаны основные задачи статистической теории упругости. Мы будем заниматься плоской задачей, которая представляет для нас особый интерес как по обилию приложений, так и по большей разработанности и эффективности методов решения.

2. Совокупность гармонических функций – это совокупность всех решений уравнения Лапласа

, (1)

которое является одним из простейших дифференциальных уравнений с частными производными второго порядка.

Подобно тому, как в случае обыкновенных дифференциальных уравнений для выделения одного определенного решения задают дополнительные условия, так и для полного определения решения уравнения Лапласа требуются дополнительные условия. Для уравнения Лапласа они формулируются в виде так называемых краевых условий, т.е. заданных соотношений, которым должно удовлетворять искомое решение на границе области.

Простейшее из таких условий сводится к заданию значений искомой гармонической функции в каждой точке границы области. Таким образом, мы приходим к первой краевой задаче или задаче Дирихле:

Найти гармоническую в области D и непрерывную в функцию u(z), которая на границе D принимает заданные непрерывные значения u().

К задаче Дирихле приводится еще, кроме вышеперечисленных, отыскание температуры теплового поля или потенциала электростатического поля в некоторой области при заданной температуре или потенциале на границе области. К ней сводятся и краевые задачи других типов.

б) Обобщенная задача Дирихле.

В приложениях условие непрерывности граничных значений , является слишком стеснительным и приходится рассматривать обобщенную задачу Дирихле [1]:

На границе области D задана функция , непрерывная всюду, кроме конечного числа точек , где она имеет точки разрыва первого рода. Найти гармоническую и ограниченную в области D функцию u(z), принимающую значения u(z) = во всех точках непрерывности этой функции.

Если заданная функция непрерывна, то обобщенная задача Дирихле совпадет с обычной, ибо условие ограниченности функции u(z) следует из условия ее непрерывности в .

Теорема единственности решения обобщенной задачи Дирихле:

В данной области при заданной граничной функции существует не более одного решения обобщенной задачи Дирихле.

Решение обобщенной задачи Дирихле можно свести к решению обычной задачи Дирихле.

Можно доказать, что:

1. для любой односвязной области D и любой кусочно-непрерывной с точками разрыва первого рода граничной функции решение обобщенной задачи Дирихле существует.

2. решение обобщенной задачи Дирихле для единичного круга дается интегралом Пуассона

, , ) (2)

3. для произвольной области D, мы получим искомую формулу для решения обобщенной задачи Дирихле интегральной формулой Дж.Грина [12, 18]:

, (3)

где - производная в направлении внутренней нормали к С,

ds - элемент длины , соответствующей ,

* - элемент внутренней нормали к , - фиксированная произвольная точка области D, а функция ; , реализующая отображение D на единичный круг и - функция Грина для области D, гармоническую всюду в D кроме точки , где имеет плюс.

Формула Грина (3) выражает решение задачи Дирихле для некоторой области D через логарифм конформного отображения D на единичный круг, т.е. сводит решение задачи Дирихле к задаче конформного отображения. И обратное верно.

Итак, задача конформного отображения области на единичный круг и задача Дирихле для той же области эквивалентны, они сводятся друг к другу с помощью простых операций дифференцирования и интегрирования.

в) Видоизмененная задача Дирихле.

Пусть S+ - связная область, ограниченная простыми замкнутыми непересекающимися гладкими контурами , из которых первый охватывает все остальные. Под L мы будем подразумевать совокупность этих контуров , (). Через - мы обозначим совокупность конечных областей заключенных, соответственно, внутри контуров и бесконечной области , состоящей из точек расположенных вне . На контуры мы наложим еще следующее условие: угол, составляемый касательной к с постоянным направлением, удовлетворяет условию H; иными словами, мы будем считать, что L удовлетворяет условию Ляпунова [17,24].


Страница: