Разработка модели технологического процесса получения ребристых труб и ее апробация
Рефераты >> Технология >> Разработка модели технологического процесса получения ребристых труб и ее апробация

Отливка теплообменник удовлетворяет этим условиям, т.к. s = 8 мм, r0= 38 мм,

(5-10)

Следовательно, данная математическая модель справедлива для расчетов затвердевания отливки теплообменник.

5.2. РАСЧЕТ ЗАТВЕРДЕВАНИЯ

Используя общее решение задачи затвердевания с помощью математической модели (5-1)-(5-5) возможно решить конкретные инженерные задачи, связанные с затвердеванием отливки.

Так, для данной отливки возможно произвести расчет ее затвердевания. Продолжительность затвердевания отливки t3 определяем по формуле [34]:

(5-11)

где LE - удельная теплота кристаллизации эвтектики, Дж/кг;

b4 - коэффициент теплоаккумуляции формы, Дж/м2К×с0,5 или Вт×с1/2/м2К;

R0 - приведенный размер;

ТЕ - температура эвтектики сплава, К;

r3 - плотность отливки, кг/м3;

Тф - температура формы, К;

t1 - время полного охлаждения перегретого расплава, К.

(5-12)

где С1 - удельная теплоемкость расплава, Дж/кг×К;

r1 - плотность расплава, кг/м3.

ТН = 1/2 (Тn + ТL), Тн » Тзал;

ТН = 1/2 (Тзал + ТL),

где Тзал - температура заливки, К;

ТL - температура ликвидуса, К.

Рис.5-3.

На рис.5-3,а приведена кривая изменения скорости затвердевания тела отливки в зависимости от времени. Расчет выполнен по

(5-13)

где VЕ - температура эвтектики,

для t ³ t1.

На рис.5-3, б представлено распределение линейной скорости затвердевания в теле отливки. График построен по формуле

(5-14)

при к = 0,

где l0 = r0 - характерный приведенный размер, равный половине толщины отливки.

Распределение скорости затвердевания неоднородно: в центре тела скорость более, чем в 2 раза меньше скорости у поверхности (рис.5-3). С помощью структурной диаграммы [34] по средней скорости затвердевания и скорости затвердевания у поверхности и в центре отливки, а также химическому составу чугуна (чугунный лом - тормозные колодки от железнодорожных вагонов, химический состав: Si - 1.18 %, Mn - 0.61 %, C - 3.47 %, P - 0.185 %, S - 0.083 %) и НВ = 229, определяем структуру чугуна. Судя по этой диаграмме, основной структурой данной отливки является феррит, причем концентрация его от поверхности к середине увеличивается, что и подтверждает структура реальной отливки (рис.5-4).

Рис.5-4.

Эта структура является не желательной для отливки теплообменник, т.к. ферритная структура плохо работает при повышенных давлениях, в результате чего отливка дает течь. Необходимо изменить ферритную структуру на перлитную.

5.3. ПРИМЕНЕНИЕ ЭВМ

Для приближенного инженерного решения математической модели и построения графиков скорости затвердевания и эквивалентной скорости затвердевания (рис.5-3) с помощью ЭВМ, использовалась авторская программа. Программа написана на языке высокого уровня TURBO Pascal 7.0.

Результаты расчетов выведены на магнитные носители информации при помощи САПР “Аuto CAD 12”.

Исходные данные для расчета и текст программы см. приложение.

6. ГЕРМЕТИЧНОСТЬ ЧУГУНОВ

Под герметичностью чугуна понимают его способность противостоять проникновению через него находящихся под давлением жидкости или газа [24].

Герметичность чугуна во многом зависит от физического его состояния и, в частности, от наличия в нем пористости. Герметичность и пористость чугуна являются взаимно связанными величинами, одна из которых обусловливает другую. Поэтому оценка герметичности чугуна в дальнейшем будет произведена на основании пористости.

6.1. РАЗНОВИДНОСТИ НАРУШЕНИЙ ПЛОТНОСТИ СЕРОГО ЧУГУНА

Целесообразно различать следующие виды пористости чугуна:

а) микропористость - обуславливается пространством графитовых включений, а также межкристаллическим пространством;

б) макропористость - является следствием образования рассредоточенной пористости типа усадочной, газовой и пр.

в) грубая пористость - имеет место при образовании в отливках грубых пороков, таких как усадочные, песчаные, шлаковые раковины, трещины, неслитины и т.

6.1.1. Микропористость

При анализе микропористости полагаем:

- что плотность графитных включений не зависит от формы, характера и залегания, и во всех случаях равна 2.25 г/см3;

- межкристаллическое пространство по сравнению с объемом графитовых включений очень мало и поэтому в дальнейшем оно учитываться не будет;

- плотность основной металлической массы для всех исследуемых образцов чугуна является постоянной величиной, равной 7.8 г/см3 .

На основании принятых выше условий можно предполагать, что микропористость чугуна в основном образуется за счет пространства, занимаемого графитными включениями [24]. Пространство графитных включений определяется количеством свободного углерода - Сгр:

Сгр = Собщ - Ссвяз,

(6-1)

Общее содержание углерода Собщ и связанный углерод определяются химическим анализом. Кроме того, количество связанного углерода определяется структурой металлической основы, при этом

Ссвяз = 0.8×Кп,

(6-2)

где Кп - количество перлита в металлической основе чугуна.

При определении микропористости целесообразно пользоваться относительными величинами количества и объема графита, а также основной металлической массы чугуна [24].

Если обозначить:

gгр - удельный вес графита;

gм - удельный вес металлической основы чугуна;

gгр - относительный вес графита в чугуне;

gм - относительный вес;

Кгр - относительный объем графита в чугуне;

Км - относительный объем металлической части чугуна,

тогда относительный объем графита и металлической части

чугуна определяются по формулам (6-3),(6-4).

(6-3)

(6-4)

где Vгр и Vм - абсолютные объемы графита и металла.

Формулы (6-3),(6-4) позволяют определить относительный объем графита и металлической основы чугуна в зависимости от его химического состава.

(6-5)

аналогично:

(6-6)

Зная относительный объем графитных включений, можно определить расчетную плотность чугуна, при условии отсутствия в нем микропористости.

gт = Кгр×gгр+Км×gм.

(6-7)

Величина gт называется теоретическим удельным весом чугуна.


Страница: