Анализ сополимеризации индена с малеиновым ангидридом
Рефераты >> Химия >> Анализ сополимеризации индена с малеиновым ангидридом

2.2 Структура продуктов полимеризации индена и кумарона

Вопрос о структуре образующихся полимеров с самого начала исследований был предметом длительных научных споров. Димеру индена была приписана следующая насыщенная структура:

,

подтвержденная более поздними исследованиями [18].

Аналогично в виде замкнутых насыщенных структур представляли первоначально молекулы тетрамера и более высокомолекулярных полимеров индена. Однако такое представление противоречило экспериментальным данным о наличии остаточной непредельности у продуктов полимеризации индена, поэтому для изображения дииндена предложили формулы:

или ,

которые были перенесены на строение продуктов более глубокой степени полимеризации. Такая структура полимеров объясняет их способность присоединять галоид (наличие двойной связи в молекуле полимера), а также способность продуктов низкой степени полимеризации к дальнейшему уплотнению, и наблюдаемую даже у твёрдых хрупких смол способность к присоединению кислорода с образованием пероксидов. Этим же объясняется постепенное уменьшение иодного числа у полимеров большей молекулярной массы, так как остаточная двойная связь приходится на всё более длинную молекулу полимера.

Спектроскопические исследования [26 - 28] кумарона и индена и полученных из них методом каталитической полимеризации продуктов подтверждают, что реакция полимеризации протекает за счёт раскрытия двойной связи пятичленного цикла. Поэтому представление о линейной структуре полимеров индена и кумарона получило наибольшее распространение. Длительное время полимеры кумарона и индена представляли в виде линейных цепей с расположением молекул по одну сторону от главной оси. Экхардт и Хайне [26] впервые высказали предположение о том, что под действием катализаторов катионной полимеризации, таких, как хлористый алюминий или трёхфтористый бор, из индена возможно образование трёх типов стереорегулярных полимеров: изотактических, атактических и синдиотактических, что доказывают и исследования ИК спектров полииндена [27].

Вполне определённо доказана возможность получения стереорегулярных полимеров из кумарона [23]. Характерной особенностью кумарона является то, что он склонен к образованию оптически активных полимеров, имеющих диизотактическую структуру. В ИК спектре продукта термической полимеризации кумарона обнаружена полоса при n=3540 см-1 [27], которая может быть объяснена только образованием в поликумароне внутримолекулярной водородной связи между кислородом фуранового цикла связанной молекулы и одним из водородов другой молекулы, которая может возникнуть только в том случае, если цепь поликумарона имеет не линейное, а зигзагообразное строение:

Регулярное расположение молекул в цепи поликумарона должно быть устойчивым, так как оно стабилизируется водородной связью. Получение оптически активного поликумарона открывает возможности для изготовления на его основе избирательных по оптической активности фильтров, адсорбирующих средств или ионообменных смол.

Получить оптически активные полимеры индена до сих пор не удалось. Таким образом, нет полной аналогии между строением полимеров индена и кумарона. Различия в структуре образующихся полимеров, а также в протекании процессов полимеризации кумарона и индена объясняются различными свойствами пятичленного цикла в том и другом случае.

2.3 Сополимеризация индена с кумароном и другими непредельными соединениями

В продуктах переработки каменноугольной смолы и сырого бензола инден и кумарон содержатся совместно. Поэтому особый интерес представляет исследование сополимеризации этих двух мономеров. Отметим, что в литературе нами найдены данные только по изучению катионного процесса.

В присутствии четырёххлористого титана реакция сополимеризации индена с кумароном протекает с хорошим выходом. При этом отмечено [23], что молекулярная масса закономерно понижается от 1,63 для полииндена до 0,28 дл/г с увеличением доли кумарона в смеси мономеров до 50 мол.%. Полимеризация в присутствии BF3 легко позволяет получить поликумарон и сополимер с 50 % индена с характеристической вязкостью 1,7 дл/г, что выше, чем с TiCl4.

Кроме индена и кумарона, в коксохимическом сырье могут содержаться также такие непредельные соединения, как стирол, a-метилстирол, циклопентадиен. В табл. 1.1 приводятся некоторые экспериментальные данные, характеризующие сополимеризацию этих соединений с инденом.

Таблица 1.1. - Условия сополимеризации индена со стиролом, a-метилстиролом, циклопентадиеном в хлористом метилене и вязкость (h) полученных сополимеров при выходе 100 % (по данным [23]).

Второй мономер1)

Катализатор2)

Температура, ºС

h, 100см3/г

Стирол

TiCl4

-72

0,19

BF3

-72

0,20

BF3

-100

0,22

a-метилстирол

TiCl4

-72

0,54

BF3

-97

1,45

Циклопентадиен

TiCl4

-72

0,44

TiCl4

-93

0,85

1) концентрация 0,42 моль/л; 2) концентрация 0,02 моль/л.

При совместной полимеризации во всех случаях отмечается понижение молекулярной массы получаемого продукта. Особенно наглядно это видно на примере совместной полимеризации индена и стирола [23], если учесть, что в одинаковых условиях гомополимеризация стирола даёт продукт с вязкостью 0,56; a-метилстирола - 0,55; индена - 1,60 дл/г.

Сополимеризация кумарона со стиролом и a-метилстиролом при концентрации TiCl4 0,01 моль/л и температуре 201 К за 0,5 ч протекает с выходом 58 и 89 %, давая продукт, содержащий 48 и 44 % кумарона, с вязкостью 0,12 и 0,82 дл/г соответственно [23]. Таким образом, анализ имеющихся экспериментальных данных показывает, что катионная гомополимеризация и сополимеризация индена и кумарона наиболее активно протекает под действием таких катализаторов, как хлористый алюминий и трёхфтористый бор. Совместная полимеризация нескольких мономеров приводит обычно к получению полимеров с меньшей молекулярной массой, чем при их раздельной полимеризации. Снижению молекулярной массы способствует также применение ароматических растворителей.


Страница: