Физико-химические основы адсорбционной очистки воды от органических веществ
Рефераты >> Химия >> Физико-химические основы адсорбционной очистки воды от органических веществ

(26)

где , а .

Критерии эффективности применения адсорбента в однократном или в многоцикловом процессе адсорбция – регенерация облегчают выбор и контроль свойств материалов для очистки воды. Окончательное решение об использовании данного образца адсорбента принимают при наличии сведений о его способности очищать воду. Поэтому в качестве критерия эффективности регенерации адсорбента целесообразно принять отношение объемов воды равного качества (С0, Ск = const), обработанных исходным и регенерированным углем (VРУ и VАУ):

(27)

Критерий указывает на технические возможности увеличения количества обрабатываемой воды. В процессе использования возможно самопроизвольное снижение (потеря адсорбента или активности материалы; ,) и направленное его увеличение (доактивация: ). Лучшими являются стабильные режимы обработки, которые обеспечивают .

Высокая стоимость АУ и сложность регенерационных процессов требуют технико-экономического сравнения себестоимости очистки воды с различными вариантами восстановления адсорбента, начиная с ранних этапов предварительных исследования и кончая стабильным режимом эксплуатации сооружений промышленного масштаба. Затраты на приобретение свежего АУ, необходимого для восполнения его потерь при регенерации или периодическую полную замену при дезактивации, составляют от 40 до 85% всех затрат на очистку воды, и доля их зависит от производительности станции. Средние потери угля составляют от 5 до 15% за цикл и зависят исключительно от метода обработки АУ. В то же время расходы на собственно восстановление адсорбента на указанных станциях составляют, как правило, менее 25% затрат на очистку воды. Качество же регенерированного угля обычно не зависит от стоимости его обработки на установках равной производительности.

В этих условиях различие себестоимости собственно регенерации АУ по одной технологии не превышает 5 – 10%, а при разной технологии достигает 20 – 25%. На основании этого на стадии исследования и предварительного сравнения вариантов регенерации можно не рассчитывать различие затрат на восстановление адсорбента, а сравнивать лишь расходы на восполнение потерь угля (при постоянной производительности). Сравниваемая себестоимость обработки воды (, руб/м3) прямо пропорциональна дозе угля (, руб/т) и размеру добавки, равной потерям АУ ():

(28)

Особый интерес представляет сравнение стоимости обработки воды с регенерацией (I) и без нее (II, ) для сорбента одной марки ():

(29)

В этих условиях с учетом формулы (32), получим

(30)

где – потери вещества сорбента при обработке.

Безразмерный критерий характеризует относительные эксплуатационные затраты на очистку воды с регенерацией сорбента. Рассмотренные выше безразмерные критерии (, , и ) позволяют определить технико-экономическую и технологическую эффективность различных методов обработки и регенерации АУ и решать задачи оптимизации этих процессов. Например, нахождение методов обработки адсорбента, позволяющих при его многократном использовании очистить наибольшее количество воды, есть задача поиска максимума , а обработка с наименьшими затратами – поиск минимума . Большинство методов регенерации растворителями, растворами неорганических реагентов или пропарка без выгрузки угля из адсорбера позволяют полностью сохранить сорбент (), но из-за неполноты десорбции () эффективность восстановления невысока (). Эти методы обработки целесообразны на малых установках (при ). Высокотемпературная регенерация (так же как другие методы обработки в жестких условиях) ведет к потере вещества адсорбента () при перегрузке за счет обгара и т.д. Однако эффективная реактивация () позволяет очищать большое количество воды (), особенно на крупных установках, где можно вести процесс с малыми потерями угля (П ≤ 0,1, Э0 ≤ 0,1).

При постановке эксперимента по изучению адсорбции необходимо учитывать зависимости, связывающие основные параметры процесса: концентрацию адсорбата в растворе (С0 и Сн), дозу адсорбента (ДАУ), время контакта (τк) и адсорбционную емкость (Ар); эти зависимости нелинейны. Учет их нелинейности позволяет более рационально ставить эксперименты – при меньшем числе анализов получать больше информации о процессе адсорбции. Реализация этого при построении изотермы адсорбции сводится к следующему:

– при и охватить как можно более широкий интервал измерения ;

– внутри диапазона изменения изменять не в арифметической, а в геометрической прогрессии.


Страница: