Разработка алгоритмов контроля и диагностики системы управления ориентацией космического аппаратаРефераты >> Авиация и космонавтика >> Разработка алгоритмов контроля и диагностики системы управления ориентацией космического аппарата
Вероятность совершить ошибку l рода [8] называется уровнем значимости критерия и обозначается q. Обычно уровень значимости выбирают, равным 0.01; 0.1; 0.05 (последнее значение - наиболее часто) [28].
Критерии значимости – это критерии, с помощью которых проверяют гипотезы об абсолютных значениях параметров или о соотношениях между ними для генеральных совокупностей (с точностью до параметров) функцией распределения вероятностей [29].
Построение гистограммы выборки. Гистограмма
является эмпирическим аналогом функции плотности распределения f(x). Обычно ее строят следующим образом:
1. Находят предварительное количество квантов (интервалов), на которое должна быть разбита ось Ox. Это количество K определяют с помощью оценочной формулы:
K=1+3.2lgN ; (4.34)
Где найденное значение округляют до ближайшего целого числа.
2. Определяют длину интервала [29]:
; (4.35)
Величину
можно округлить для удобства вычислений.
3. Середину области изменения выборки (центр распределения)
принимают за центр некоторого интервала, после чего легко находят границы и окончательное количество указанных интервалов так, чтобы в совокупности они перекрывали всю область от
до
.
4. Подсчитывают количество наблюдений
попавшее в каждый квант;
равно числу членов вариационного ряда, для которого справедливо неравенство [27-29]:
; (4.36)
здесь
и
- границы m-ого интервала. Отметим, что при использовании формулы (4.36) значения
попавшее на границу между (m-1)-м и m-ом интервалами, относят к m-ому интервалу.
5. Подсчитывают относительное количество (относительную частоту) наблюдений
/N , попавших в данный квант.
Строят гистограмму [7, 8, 9], представляющую собой ступенчатую кривую, значения которой на m-ом интервале
, (m=1,2,…,K)
6. постоянно и равно
/N, или с учетом условия
равно (
/N)
.
Критерии согласия. Критерием согласия [8] называется критерий гипотезы о том, что генеральная совокупность имеет распределение предполагаемого типа (например, нормально распределение). Среди различных критериев согласия наиболее употребителен универсальный критерий согласия
(Пирсона).
Проверку гипотезы о виде функции распределения с помощью этого критерия производят следующим образом [27-29]:
1. a) По выборке строят гистограмму. Если в каком-либо f-ом интервале число наблюдений
окажется меньше пяти, то его объединяют с соседним интервалом (или интервалами) так, чтобы число наблюдений в таком объединенном интервале оказалось большим или равным пяти. Пусть
– окончательное число интервала группирования, тогда очевидно, что
; (4.37)
б) Задаются видом гипотетической функции распределения и для каждого из r (r=1,2,…) параметров этого распределения находят оценки, причем эти оценки можно определять как по исходным, так и по сгруппированным данным [27].
в) Определяют теоретическую вероятность
попадания в каждый из
интервалов случайной величины с заданным распределением, параметры которого или известны или оценены в параграфе б) [28].
г) вычисляют число g:
; (4.38)
2. Известно, что для данного критерия согласия случайная величина g при Больших N имеет
распределение с
- r - 1 степенями свободы, где r - число определенных неизвестных заранее параметров гипотетического распределения, а уменьшения числа степеней свободы еще на единицу объясняется наличием линейного соотношения (4.35) между эмпирическими величинами
и N , входящими в расчетную формулу (4.36). Задавшись уравнением значимости q, по таблице
-распределений находят критическое значение
, причем критическая область определяется неравенством g>
=
=
- r – 1;
.
3.Сравнивая значения g и
и выносят решение о принятии (g <=
) или отклонение (g >
) рассматриваемой гипотезы о виде функции распределения [27-29].
4.7 Алгоритм контроля отказов ДС при неполной тяге
Алгоритм неполной тяги - представляет собой алгоритм позволяющий моделировать остаточную тягу при отказе одного из реактивных двигателей стабилизации, для отказа типа «не отключение». Остаточная тяга может меняться в пределах: 0%-100%. При 0% тяги, отказ типа «не отключение» переходит в отказ типа «не включение». Пусть P – тяга, а k – коэффициент остаточной тяги, задаваемый в процентах. Тогда в общем случае, при отказе одного из двигателей, тяга имеет вид (4.39) [25, 26]:
(4.39)
Блок-схема алгоритма имеет вид (Рис. 4.8):
