Основы химии
Рефераты >> Химия >> Основы химии

Глава 10.

Кинетика химических процессов.

10.1. Сущность кинетики химических процессов.

Химическая кинетика изучает как скорость, так и механизм химических реакций.

Под химической реакцией обычно понимают процессы превращения одних веществ в другие. В их основе лежат акты перемещения атомов от одних молекулярных структур к другим и изменение электронных состояний взаимодействующих частиц. Такие процессы возможны только при столкновении атомов или молекул взаимодействующих веществ. В этом смысле химической реакцией можно считать любое изменение вещества, при котором образуются или разрываются связи между атомами. При химической реакции происходит деление как энергии, так и атомов при сохранении общего числа атомов (соблюдение закона сохранения атомов).

В предыдущей главе, рассмотрели законы химической термодинамики, выяснили, что изменение свободной энергии Гиббса определяет принципиальную возможность проведения химической реакции (ΔG<0), и ΔG является “движущей силой” химического процесса. Однако эту величину нужно считать лишь необходимым условием, но не достаточным для реального протекания процесса. В реальных условиях появляется ряд факторов вызывающий своеобразное “сопротивление” протеканию химической реакции.

Так, принципиально возможные химические процессы, не всегда осуществляются в действительности. Примером могут служить металлы (аллюминий, цинк, хром и др.), которые должны бы полностью окисляться кислородом воздуха, т.к. ΔG этих процессов меньше нуля, однако изготовленные из них детали и конструкции длительное время эксплуатируются в атмосфере воздуха. Аналогичное можно сказать о углеводородах, которые казалось бы самопроизвольно должны гореть на воздухе, но вопреки всем расчетам, они могут без изменения длительно пребывать в воздушной среде. Это объясняется тем, что процессы их окисления протекают очень медленно. В законах термодинамики фактор времени отсутствует. В реальных условиях химические превращения протекают во времени.

Многие химические реакции являются сложными, многостадийными процессами. Отдельные стадии реакции могут идти с большим трудом и этим обуславливать медленное протекание всего процесса. Образование отдельных промежуточных соединений может приводить к повышению энергии Гиббса эти стадии и являются своеобразным “барьером” на пути превращения исходных реагентов в продукты реакции.

При изучении хиических реакций важно знать не только почему протекает та или иная реакция, но и механизм, по которому происходит превращение и глубину этого превращения.

Под механизмом реакции обычно понимают сам процесс превращения, т.е. через какую стадию или ряд стадий должны пройти исходные вещества, чтобы превратиться в конечные продукты. Причем, каждая стадия для своего успешного завершения требует, чтобы произошли все предыдущие стадии.

Глубина превращения (степень превращения) характеризует насколько полно исходные вещества превращаются в продукты реакции. Из опытных данных ученые сделали вывод, что для протекания химической реакции необходимы столкновения молекул. Числом столкновений в секунду можно характеризовать скорость реакции. В газах и жидкостях столкновения происходят во всем объеме реакционной смеси, а в гетерогенных системах – на границе раздела фаз. Отсюда следует, что скорость химической реакции равна числу актов взаимодействия в единицу времени, в единице объема (для гомогенных реакций) или на единице поверхности раздела фаз (для гетерогенных реакций).

При каждом элементарном акте взаимодействия число молекул исходных веществ уменьшается, а число молекул продуктов реакции увеличивается. Это значит, что в результате химической реакции изменяются концентрации (или массы) как реагентов, так и образующихся веществ. На следующем рисунке (рис.10.1.) кривой “а” показано уменьшение концентрации исходного вещества, а кривой “б” –увеличение концентрации продукта реакции с течением времени”τ”.

С

моль/л а б

С1

С2 Рис.10.1.

τ1 τ2 τ

Скорость реакции количественно можно характеризовать изменением концентрации любого участвующего в реакции вещества за единицу времени. В этом случае концентрацию, как правило, выражают в моль, время – в секундах. Различают среднюю скорость реакции Vср и мгновенную Vτ.

Cредняя скорость (Vср) показывает изменение концентрации вещества (рис 10.1.) за определенный интрвал времени (от τ1 до τ2). Она выражается следующим отношением:

Vср = ± С2 – С1/ τ2 – τ1 = ± ΔС/Δτ

Здесь знак “–“ относится к концентрациям исходных веществ он указывает на то, что концентрация исходных веществ убывает, а знак “+” относится к концентрациям продуктов реакции они в результате реакции возрастают.

Мгновенная скорость Vτ – это скорость реакции в данный момент времени τ, ее можно назвать истинной скоростью. Для того, чтобы определить мгновенную скорость в данный момент времени, необходимо определить изменение концентрации за бесконечно малый промежуток времени Vτ =lim(-ΔС/Δτ). Мгновенная скорость мате-

Δτ–>0

матически определяется производной от концентрации по времени. Она равна тангенсу угла наклона касательной (углаα) к кривой, показывающей форму изменения концентраций от времени (на рис.10.3.) с течением времени. Величина угла наклона

С

k

α

Рис.10.3.

τ

касательной будет убывать, следовательно скорость реакции будет уменьшаться. Она рана тангенсу угла наклона (α) касательной к кривой зависимости концентрации от времени в соответствующий момент времени. (на рис.10.2. точка “k”)

С С

α

dc

dc k k

α

dτ τ dτ τ

Рис.10.2.

Vτ =dc/dτ=tgα

Для реакции А+В=Д, VА= -dCА/dτ; VB= -dCB/dτ; VД= +dCД/dτ.

Если для определения скорости реакции брать: количество изменяющегося вещества – количество молей, единицу времени – секунды, а единицу реакционного пространства – литр (для гомогенных систем) и единицу площади межфазового пространства м2 (для гетерогенных систем), то

Vгомоген.=[колич. вещества]/[время] [объем]=моль/с*л;

Vгетероген.=[колич. вещества]/[время] [площадь]=моль/с*м2.

Однак сокорость реакции можно определить по любому компоненту. Выбор вещества обуславливается легкостью, удобством и точностью определения количества вещества в реакционной системе. Например, объем выделеного газа, масса образующегося осадка, изменение кислотности раствора и др. На величину скорости химической реакции влияет множество факторов. Прежде всего это:

¾ природа реагирующих веществ;

¾ их концентраця;

¾ давление (если в реакции участвуют газы);

¾ катализаторы (ингибиторы);


Страница: