Разработка автоматизированной системы управления сбором и отображением информации на установке продувки азотом
Рефераты >> Металлургия >> Разработка автоматизированной системы управления сбором и отображением информации на установке продувки азотом

Модель ТП записывается в виде:

(1)

где - условно истинные (достоверные) оценки результатов и данных, соотносимые с трендом (относительно медленно изменяющейся составляющей) контролируемого параметра; определяются путем фильтрации (сглаживания) ТП;

- вариации ТП, обусловленные случайными измерительными помехами и лежащие в диапазоне допустимых погрешностей измерений; определяются из известной структуры ИК и нормированных погрешностей его составляющих;

- вариации ТП, обусловленные грубыми ошибками (сбоями) аппаратно-программных средств и имеющие характер эпизодически появляющихся выбросов, по некоторым признакам существенно превышающим диапазон нормальных значений ТП;

i - текущий (i - ый) момент времени.

Задача достоверного оценивания какой-либо величины заключается в построении таких ее оценок, которые с достаточно высокой вероятностью отклоняются от истинного значения контролируемого параметра не более чем на некоторый допустимый порог.

Истинное (условно-истинное) мгновенное значение контролируемого параметра определяется с помощью образцовых мер, в качестве которых в рассматриваемом случае могут служить тестирующие воздействия информационной и физической природы, а также совокупность математических и логических правил, описывающих поведение контролируемого параметра в нормальных условиях функционирования и предусмотренных отклонениях.

Истинное (условно-истинное) текущее значение ТП обязательно в качестве образцовой меры должно содержать достоверную предысторию его изменения.

Нормальные условия функционирования ИК характеризуются:

Воспроизводимостью результатов и данных.

ü выполнением логических условий срабатывания механизмов, блокировок и защит;

ü подтверждением логических условий срабатывания механизмов, блокировок и защит результатами анализа СИИ;

ü выполнением условий балансовых расчетов;

ü соответствием результатов и данных диапазонам их допустимого изменения на объекте;

ü соответствием результатов и данных программной траектории их изменения;

ü соответствием результатов и данных динамическим тестирующим воздействиям.

Здесь рассматривается наиболее общий случай, когда недостоверные результаты и данные являются следствием грубых ошибок (промахов) процессов измерения, преобразования и передачи сигналов согласно модели (1), а условия нормального функционирования удовлетворительно описываются трендом ТП и границами допустимых изменений его абсолютного значения и скорости изменения.

Такой логике хорошо соответствуют алгоритмы выборочной медианы и релейно-экспоненциального сглаживания, дополненные процедурами анализа КП для конкретных ситуаций, охарактеризованных ниже.

Алгоритм выборочной медианы представляет собой операцию выбора серединного значения из упорядоченного по возрастанию или убыванию ряда из “ N ” данных:

, (2)

где - медианная оценка ряда исходных данных Z (1), Z (2) , … , Z (N); Z (1) > Z (2) >…> Z (N) .

Алгоритм релейно-экспоненциального сглаживания в формульной записи имеет вид:

(3)

(4)

где Z(i) - значение контролируемой величины в текущий (i - ый) момент времени;

(i) - сглаженное значение Z(i);

a – настроечный коэффициент сглаживания;

b – функция «срезки»;

sgn - знаковая функция (функция образования знака).

Алгоритм контроля информации представлен на рисунке 3.

Работа алгоритма оценки достоверности и восстановления первичной информации заключается в следующем. При поступлении исходной информации производится распознавание параметра, т.е. назначение измеренной величины – температура, химический анализ, и т.п. (блок 2), после чего производится вычисление диапазона, в котором в котором может изменяться измеренная величина (блок 3). Выбор базового значения - это ответственная работа, оказывающая большое влияние оценку достоверности информации. После контроля наличия измеряемой величины (блок 4), при ее наличии, производится вычисление сглаженного значения (блок 7). Значение коэффициента l2j выбирается для каждого параметра индивидуально и влияет на степень сглаживания сигнала – чем меньше значение l2j, тем более гладкой оказывается кривая сглаженного сигнала. В блоке 8 данного алгоритма производится фильтрация грубых выбросов измеряемого параметра на основе "коридора", рассчитанного в блоке 3. В случае непопадания поступившего параметра в диапазон (блок 3), выдается сообщение о неверности полученного значения (блок 9) и выдается запрос на повторный ввод (блок 10). Если полученные данные не удовлетворяют условиям блока 11, то выдается сообщение о недостоверности полученного значения (блок 12) и происходит восстановление первичной информации, то есть текущему сглаженному значению присваивается значение предыдущего сглаженного значения (блок 16), и расчет переходит к блоку 6. В случае удовлетворительного прохождения измеренной величины через блок 8 производится проверка "гладкости" сглаженного сигнала (блоки 14 и 15). Значения коэффициентов l1j и l3j также выбираются для каждого параметра индивидуально. В случае неудовлетворения данных условиям блоков 14 и 15 выдается соответствующее сообщение оператору (блок 13), после чего производится восстановление первичной информации (блок 16).

При отсутствии измеряемого параметра (блок 4) происходит присвоение текущему измеряемому параметру значения предыдущего сглаженного значения (блок 5), после чего происходит переход к блоку 6.

В блоке 6 производится проверка количества контролируемых параметров заданному числу, и, в случае контроля всех параметров, производится запись данных в массив (блок 17), иначе работа алгоритма начинается заново.

Рисунок 3 – Алгоритм оценки достоверности и восстановления первичной информации

2.3 Анализ работы алгоритма оценки достоверности и восстановления первичной информации

Для проверки работы алгоритма воспользуемся данными, содержащимися в паспорте обработки плавки на УПСА. Численные значения данных, содержащихся в обрабатываемых массивах, представлены в таблице 1.

Таблица 1 - Входные данные, обрабатываемые алгоритмом

№ плавки

Дпр, мин

Ргср, м3/ч

РБ1 (ФС65), кг

РБ2 (ФС75), кг

РБ3 (SiMn), кг

РБ4 (FeCr), кг

РБ5 (сечка), кг

РБ6 (FeTi), кг

Тн, °С

Тк, °С

5526

16

45

     

1615

1525

5527

9

45

150

     

1615

1570

5528

10

45

   

150

 

1635

1555

5529

7

48

б/д

 

б/д

 

б/д

 

1610

1550

5530

7

45

     

1610

1570

5531

7

45

   

500

 

1625

1570

5532

7

45

     

1595

1550

5533

10

48

   

600

 

1630

1550

5534

8

45

   

300

 

1640

1600

5535

7

45

   

100

 

1610

1600

5536

15

45

   

1500

 

1615

1545

5537

19

45

   

600

 

1660

1575


Страница: