Технология автоматизация литейных процессов
Рефераты >> Металлургия >> Технология автоматизация литейных процессов

Подсистема "Статическое управление" осуществляет расчет рекомендаций по массам шихтовых материалах, по интегральным расходам кислорода и природного газа на подогрев лома, по интегральному расходу кислорода на продувку, по программе управляющих воздействий. Необходимая информация вводится машинистом дистрибутора в режиме диалога, а также хранится в виде предысторий результатов предыдущих плавок. Результаты работы выводятся на видеоконтрольные устройства и после подтверждения машинистом дистрибутора служат заданиями (уставками) для систем нижнего уровня.

Подсистема "Динамическое управление" осуществляет расчет корректирующих управляющих воздействий в процессе продувки на основе косвенной информации о состоянии плавки и результатов дискретных замеров параметров ванны, уточняет момент повалки для скачивания шлака, рассчитывает управления на периоды додувки и доводки, массы раскислителей и легирующих, формирует паспорт плавки. В системе используется информация о вибрации корпуса конвертера и фурмы, интенсивности шума, данные газового анализа, дутьевого режима и режима присадок, результаты замера температуры и анализа стали. Результаты работы выводятся на видеоконтрольные устройства в виде рекомендаций и передаются в системы первого уровня (в виде уставок и программ).

С учетом выше описанного АСУ ТП выплавки стали в конвертере изображена на рис.2.

Рисунок 2 - АСУ ТП выплавки стали в конвертере

1.5.2 Постановка задачи

Повышение требований к качеству продукции, в частности, учитывая тему данного дипломного проекта, по содержанию легирующих элементов в стали, требует оптимизации проведения процесса раскисления и легирования стали. Получение металла с заданным химическим составом и требуемыми свойствами затруднительно из-за большого количества выплавляемых марок стали и используемых раскислителей и легирующих, высокой степени колебания заданного состава готовой стали от выпуска к выпуску, изменчивости свойств применяемых раскислителей, проведения раскисления и легирования в условиях неполноты информации, колебаний угара элементов, малого времени слива. Сменный мастер назначает требуемые массы ферросплавов зачастую по интуиции, что ведет к перерасходу раскислителей и легирующих, браку готовой продукции. Для повышения качества готовой продукции и экономии ферросплавов необходима АСУ процессом раскисления и легирования стали при сливе ее в ковш из конвертера.

Раскисление и легирование в ККЦ-1 ОАО "ЗСМК" производится при сливе металла в ковш и на УДМ; в данной же дипломном проекте производится расчет масс ферросплавов, отдаваемых при сливе металла в ковш. алгоритм расчета масс ферросплавов должен быть универсальным и легко перестраиваемым на все стадии раскисления и легирования. Если металл не обрабатывается на УДМ, то удовлетворительная точность должна достигаться при расчете материалов, подаваемых в ковш при сливе металла. Поэтому в рамках дипломного проекта ставится задача отработать алгоритм для стадии слива металла в ковш на данных о работе ККЦ-1 ОАО "ЗСМК".

2 ИССЛЕДОВАНИЕ И РАЗРАБОТКА АВТОМАТИЗИРОВАННОЙ ТЕХНОЛОГИИ

2.1 Содержательная модель физико-химического механизма процесса

Жидкая нераскисленная сталь содержит значительное количество растворенного кислорода. Снижение температуры металла во время разливки и при кристаллизации сопровождается уменьшением растворимости кислорода, что приводит к образованию и выделению оксида углерода, к получению пузыристых отливок и неплотных слитков. Первой задачей раскисления является снижение содержания растворенного в стали кислорода и связывания его в прочные соединения, не дающие газообразных выделений при затвердевании металла. В случае получения спокойно затвердевающих сталей содержание растворенного кислорода должно быть как можно меньше; при получении сталей кипящих сортов содержание кислорода должно быть снижено до заданной величины, обеспечивающей нормальное кипение стали в изложницах. Другой задачей раскисления является максимальное удаление из жидкой стали образующихся продуктов раскисления – неметаллических включений. Наиболее распространенными раскислителями стали являются кремний Si, марганец Mn и алюминий Al. В некоторых случаях применяют кальций Ca, хром Cr, ванадий V, церий Zr, титан Ti. Эти элементы, вводимые порознь или совместно, уменьшают количество растворенного в жидкой стали кислорода до определенного уровня, зависящего от их сродства к кислороду. Оставшиеся в твердом растворе элементы-раскислители действуют как легирующие примеси, соответственно изменяющие свойства стали.

Раскисляющая способность элемента, вводимого в сталь, измеряется содержанием растворенного кислорода, остающегося в равновесии с оставшимися в жидкой стали молекулами элемента-раскислителя и образовавшимися продуктами раскисления. Химический состав и свойства продуктов раскисления могут сильно меняться, раскисляющее действие одного и того же элемента различно и зависит от состава и свойств получающихся продуктов раскисления. Раскисляющая способность каждого элемента, растворенного в жидкой стали, зависит от свойств данного элемента, концентрации элемента в жидкой стали, активности его окислов в продуктах окисления, температуры. Чем выше раскисляющая способность элемента, тем меньше содержание растворенного в стали кислорода, находящегося с ним в равновесии при заданной температуре. Раскисляющая способность элементов в зависимости от их концентрации в жидкой стали и активности продуктов раскисления выражается уравнениями химической термодинамики.

Эти уравнения устанавливают количественную зависимость между содержанием растворенного в жидкой стали кислорода, содержанием в стали данного химического элемента, активности окисла этого элемента в продуктах раскисления, находящихся в равновесии с жидкой сталью, и температурой жидкой стали; дают точные сведения о количестве остающихся в стали после раскисления растворенного кислорода, неметаллических включений, выделяющихся в момент затвердевания стали; дают сведения о химическом составе неметаллических включений. Наиболее важные термодинамические уравнения сталеплавильных процессов, в частности, раскисления, приведены в табл.2.

Таблица 2 - Термодинамические уравнения раскисления и легирования

Уравнение реакции

Константа равновесия К

Зависимость логарифма константы равновесия lg К от температуры

Изменение свободной энергии реакции DF

1

2

3

4

[Fe] + [O] = [FeO]

aFeO/[%O]

6320/T – 2.734

- 28900 + 12.51 * T

[Mn] + [O] = [MnO]

aMnO/([%Mn] * [%O])

12760/T – 5.68

- 58400 + 26 * T

[Si] + 2 * [O] = [SiO2]

aSiO2/([%Si] * [%O2])

31000/T – 12

- 142000 + 55 * T

1

2

3

4

2 * [Al] + 3 * [O] = [Al2O3]

aAl2O3/([%Al2] * [%O3])

57460/T – 20.48

- 262800 + 93.7 * T

Для шлака из FeO + MnO:

[Mn] + [FeO] = [MnO] + [Fe]

MnO/([%Mn] * [%FeO]

6440/T – 2.95

- 29500 + 13.5 * T


Страница: