Термодинамика химической и электрохимической устойчивости сплавов системы Ni-Si
Рефераты >> Химия >> Термодинамика химической и электрохимической устойчивости сплавов системы Ni-Si

; (1.4)

то получится представление функции полиномом. В свою очередь, каждый из параметров , , ,…, может зависеть от температуры:

; (1.5)

Многочлены (1.4) и (1.5) - приближенное выражение неизвестной функции . Качество приближения определяется величиной остатка рядов - той ее части, которая отбрасывается. Чтобы наше приближение удовлетворительно описывало термодинамические свойства раствора, нужно, чтобы остаток был невелик по сравнению с ошибкой экспериментов. Тогда дальнейшее уточнение функции теряет смысл.

Как показывает математическая обработка экспериментальных данных, для бинарных растворов достаточно трех параметров , , , чтобы в большинстве случаев корректно аппроксимировать термодинамические функции смешения системы. Поэтому концентрационную (конфигурационную) энергию взаимообмена компонентов в дальнейшем будем представлять тремя членами ряда (1.4), а избыточную энергию Гиббса любой фазы с областью гомогенности будем описывать уравнением:

; (1.6)

где и - термодинамические характеристики областей регулярности двойной системы вблизи чистых компонентов;

- параметр, учитывающий отклонение от "регулярности".

Умножив части уравнения (1.6) на общее число молей компонентов в растворе, получим избыточную энергию Гиббса произвольного количества фазы. Откуда:

(1.7)

Активности компонентов двойной системы:

; (1.8)

; (1.9)

Обобщенная теория "регулярных" растворов позволяет успешно описать термодинамические свойства металлических, неметаллических и смешанных систем [5].

сплав кремний никель интерметаллид

1.4 Моделирование термодинамических свойств системы Ni-Si

Для описания термодинамических свойств фаз переменного состава твердых растворов применялась обобщенная теория "регулярных" растворов в однопараметрическом приближении.

Энергетические параметры γ-фазы (Ni) определялись из условия равновесия интерметаллида Ni3Si с твердым раствором:

; (1.10)

; (1.11)

; (1.12)

; (1.13)

; (1.14)

; (1.15)

Комбинируя реакции, получим:

; (1.16)

; (1.17)

Величины энергия образования реакций (1.14) и (1.15):

;

;

кДж/моль.

Отсюда:

,

В рамках однопараметрического приближения теории "регулярных" растворов:

,

; (1.18)

; (1.19)

Мольные доли компонентов и температуру определили из диаграммы состояния системы Ni-Si. Они представлены в табл.1.3:

Таблица 1.3

Состав γ-фазы по диаграмме состояния Ni-Si

T, 0С

T, К

xSi (γ)

xNi (γ)

793

1066

0,100

0,900

821

1094

0,105

0,895

870

1143

0,110

0,890

910

1183

0,115

0,885

933

1206

0,120

0,880

953

1226

0,125

0,875

974

1247

0,130

0,870

988

1261

0,135

0,865

1005

1278

0,140

0,860

1020

1293

0,145

0,855

1033

1306

0,150

0,850


Страница: