Разработка технологического процесса упрочнения кулачка главного вала с использованием лазерного излучения
Рефераты >> Металлургия >> Разработка технологического процесса упрочнения кулачка главного вала с использованием лазерного излучения

2.3. Приспособление для упрочнения

Поверхность детали представляет собой сложную геометрическую форму. Это связано с конструктивной особенностью станка. От главного вала вращательное движение кулачка передаётся в возвратно-поступательное движение штока привода узла отрезки детали автомата холодновысадочного. Вследствие этой работы износу подвергается профиль кулачка.

Для увеличения срока службы детали мы разработали приспособление для лазерного легирование (борирование) сложного профиля кулачка на установке «Кардамон».

Приспособление представляет собой систему копирования профиля кулачка. На устройстве копирования закреплена линза, предназначенная для фокусирования лазерного луча, с помощью которой при вращении кулачка и, соответственно, копира выдерживается однаковое фокусное расстояние до детали и диаметр пятна остаётся неизменным. В нашем случае диаметр сфокусированного луча составляет dл = 2 мм; скорость луча vл = 5 мм/с.

Произведём расчёт длинны окружности кулачка, учитывая все плавные переходы его профиля:

С = ПD = 2ПR

Итого Собщ = 402,1 мм

Переведем скорость луча в единицы СИ:

V = 5 мм/с = 5 · 60/1000 = 0,3 м/мин

Тогда частота вращения обрабатываемой детали составит:

Исходя их найденной частоты вращения обрабатываемой детали лазером, спроектируем редуктор приспособления для лазерной обработки. От электродвигателя посредством червячной передачи движение передается напрямую обрабатываемой детали, а посредством цилиндрической прямозубой передачи движение передается на копир, поднимающий планку с линзой, и на ходовой винт для перемещения детали относительно лазерного луча.

Проведем расчет редуктора:

Он состоит из червячной передачи и двух цилиндрических прямозубых передач. Движение червячной передаче передается от бесконтактного (шагового) моментного электродвигателя серии ДБМ-185-10-0,04-2, развивающего пусковой момент не менее 7,8 Н·м, с количеством пар полюсов – 8. Применение силового шагового привода для двигателя упрощает схему управления и позволяет обеспечить регулирование частоты от 0,6 до 1 кГц, соответственно, и частоты вращения ротора шагового двигателя.

Рассмотрим червячную передачу.

КПД червячной передачи с учетом потерь в опорах: . Передаточное число равное передаточному отношению , причём И = 15

Число витков червяка Z1 принимаем в зависимости от передаточного числа при И = 15, принимаем Z1 = 2 [c. 55. (1)]

Число зубьев червячного колеса:

Z2 = Z1 * И = 2 * 15 = 30

Примем стандартное значение [т. 4.1 (1)]

Z2 = 32 при этом И = Z2 / Z1 = 32 / 2 = 16

Выбираем материал червяка и венца червячного колеса. Принимаем для червяка сталь 45 с закалкой до твёрдости не менее НRCэ 45 и последующем шлифованием.

Так как к передаче не предъявляются специальные требования, то в целях экономии принимаем для венца червячного колеса бронзу БрА9ИСЗЛ (отливка в песчаную форму). При длительной работе контактное напряжение [Cн] = 155 МПа. (т. 4.9)

Допускаемое напряжение изгиба при реверсивной работе:

[СOF] = КFL [СOF]’.

В этой формуле КFL = 0,543 *98 = 53,3 МПа

Вращающий момент на валу червячного колеса:

Принимаем предварительно коэффициент диаметра червяка q = 10

Определяем межосевое расстояние из условий контактной выносливости:

, где к= 1,2 – коэффициент нагрузки

Модуль

Принимаем по ГОСТ 2144-76 (табл. 4.2) стандартные значения m и q

Основные размеры червяка:

Делительный диаметр червяка:

d1 = q * m = 10 * 6,3 = 63

Диаметр вершин витков червяка:

dв1 = d1 + 2m = 63 + (2 *6,3) = 75,6 мм

Диаметр впадин витков червяка:

d=d1 – 2,4 m = 63 – (2,4 * 6,3) = 47,88 мм

Длина нарезанной части шлифованного червяка:

в1 > (11 + 0,06 Z2) * m + 25 = (11 + 0,06 * 32) * 6,3 + 25 =106,4 мм

Принимаем в1 = 106 мм

Делительный угол подъема витка γ при Z1 =2 и q = 10,

γ = 110 19’

Основные размеры венца червячного колеса:

Делительный размер червячного колеса:

d2 = Z2 * m = 32 * 6,3 = 201,6 мм

Диаметр вершин зубьев червячного колеса:

dв2 = d2 +2m = 201,6 + 2 * 6,3 = 214,2 мм

Диаметр впадин зубьев:

d = d2 – 2,4 m = 201,6 – 2,4 * 6,3 = 186,5 мм

Наибольший диаметр червячного колеса:

dам2 < dв2 +6m / Z1+2 = 214,2 + (6 * 6,3) / (32*2) = 215,3 мм

Ширина венца червячного колеса:

в2 < 0,75 dв, = 0,75 * 75,6 = 56 мм

Окружная скорость червяка^

Проверка прочности зубьев червячного колеса на изгиб:

Коофициент формы зуба по табл. 4.5 [1]

YF = 2,32

Направление изгиба:

что значительно меньше вычисленного выше

[COF] = 53,3

Перейдём к расчёту цилиндрической прямозубовой зубчатой передачи

Передаточное отношение и = 1

Частота вращения ведущей шестерни n= 0,746 об/мин

Вращающий момент на ведущем валу

Т3 = Т2 = 256,4 * 103 Н * м

Выбираем материал для зубьев колёс. Для шестерни сталь 45, термообработка – улучшение, твёрдость НВ = 230, для колеса сталь 45, термообработка – улучшение, МВ 200.

Допускаемые контактные напряжения:

- предел контактной выносливости при базовом числе циклов. По табл. 3.2 для углеродистых сталей с твёрдостью поверхности зубьев менее НВ 350 и термообработкой (улучшением).

= 2НВ +70

Для шестерни:

= 2 * 230 + 70 = 530 МПа

Для колеса:

= 2 * 200 + 70 = 470 МПа

КHL = 1- коэффициент долговечности

[Sн] = 1,10 – коэф. безопасности

Для шестерни

Для колеса

Расчётное допустимое контактное напряжение

[Сн] = 0,45 (481,8 + 427,3) = 409 МПа

Исходя из компоновки редуктора принимаем межосевое расстояние dw = 200 мм из стандартного ряда чисел.

Нормальный модуль зацепления принимаем mn = 0,01 * dw = 0,01* 200 = 2 мм

Число зубьев шестерни и соответственно колеса будут:

Уточним модуль


Страница: