Информатика. Шпоргалки к госэкзамену
Рефераты >> Информатика >> Информатика. Шпоргалки к госэкзамену

Рис. 3.21. Структура физического уровня Fast Ethernet

· 100Base-TX для двухпарного кабеля на неэкранированной витой паре UTP категории 5 или экранированной витой паре STP Type 1;

· 100Base-T4 для четырехпарного кабеля на неэкранированной витой паре UTP категории 3, 4 или 5;

· 100Base-FX для многомодового оптоволоконного кабеля, используются два волокна. Для всех трех стандартов справедливы следующие утверждения и характеристики.

· Форматы кадров технологии Fast Ethernetee отличаются от форматов кадров технологий 10-мегабитного Ethernet.

· Межкадровый интервал (IPG) равен 0,96 мкс, а битовый интервал равен 10 нс. Все временные параметры алгоритма доступа (интервал отсрочки, время передачи кадра минимальной длины и т. п.), измеренные в битовых интервалах, остались прежними, поэтому изменения в разделы стандарта, касающиеся уровня MAC, не вносились.

· Признаком свободного состояния среды является передача по ней символа Idle соответствующего избыточного кода (а не отсутствие сигналов, как в стандартах Ethernet 10 Мбит/с). Физический уровень включает три элемента:

o уровень согласования (reconciliation sublayer);

o независимый от среды интерфейс (Media Independent Interface, Mil);

o устройство физического уровня (Physical layer device, PHY). Уровень согласования нужен для того, чтобы уровень MAC, рассчитанный на интерфейс AUI, смог работать с физическим уровнем через интерфейс МП. Устройство физического уровня (PHY) состоит, в свою очередь, из нескольких подуровней (см. рис. 3.20):

· подуровня логического кодирование данных, преобразующего поступающие от уровня MAC байты в символы кода 4В/5В или 8В/6Т (оба кода используются в технологии Fast Ethernet);

· подуровней физического присоединения и подуровня зависимости от физической среды (PMD), которые обеспечивают формирование сигналов в соответствии с методом физического кодирования, например NRZI или MLT-3;

· подуровня автопереговоров, который позволяет двум взаимодействующим портам автоматически выбрать наиболее эффективный режим работы, например, полудуплексный или полнодуплексный (этот подуровень является факультативным). Интерфейс МП поддерживает независимый от физической среды способ обмена данными между подуровнем MAC и подуровнем PHY. Этот интерфейс аналогичен по назначению интерфейсу AUI классического Ethernet за исключением того, что интерфейс AUI располагался между подуровнем физического кодирования сигнала (для любых вариантов кабеля использовался одинаковый метод физического кодирования - манчестерский код) и подуровнем физического присоединения к среде, а интерфейс МП располагается между подуровнем MAC и подуровнями кодирования сигнала, которых в стандарте Fast Ethernet три - FX, ТХ и Т4. Разъем МП в отличие от разъема AUI имеет 40 контактов, максимальная длина кабеля МП составляет один метр. Сигналы, передаваемые по интерфейсу МП, имеют амплитуду 5 В.

Высокоскоростная технология Gigabit Ethernet

3.7.1. Общая характеристика стандарта Достаточно быстро после появления на рынке продуктов Fast Ethernet сетевые интеграторы и администраторы почувствовали определенные ограничения при построении корпоративных сетей. Во многих случаях серверы, подключенные по 100-мегабитному каналу, перегружали магистрали сетей, работающие также на скорости 100 Мбит/с - магистрали FDDI и Fast Ethernet. Ощущалась потребность в следующем уровне иерархии скоростей. В 1995 году более высокий уровень скорости могли предоставить только коммутаторы АТМ, а при отсутствии в то время удобных средств миграции этой технологии в локальные сети (хотя спецификация LAN Emulation - LANE была принята в начале 1995 года, практическая ее реализация была впереди) внедрять их в локальную сеть почти никто не решался. Кроме того, технология АТМ отличалась очень высоким уровнем стоимости. Поэтому логичным выглядел следующий шаг, сделанный IEEE, - через 5 месяцев после окончательного принятия стандарта Fast Ethernet в июне 1995 года исследовательской группе по изучению высокоскоростных технологий IEEE было предписано заняться рассмотрением возможности выработки стандарта Ethernet с еще более высокой битовой скоростью. Летом 1996 года было объявлено о создании группы 802.3z для разработки протокола, максимально подобного Ethernet, но с битовой скоростью 1000 Мбит/с. Как и в случае Fast Ethernet, сообщение было воспринято сторонниками Ethernet с большим энтузиазмом. Основной причиной энтузиазма была перспектива такого же плавного перевода магистралей сетей на. Gigabit Ethernet, подобно тому, как были переведены на Fast Ethernet перегруженные сегменты Ethernet, расположенные на нижних уровнях иерархии сети. К тому же опыт передачи данных на гигабитных скоростях уже имелся, как в территориальных сетях (технология SDH), так и в локальных - технология Fibre Channel, которая используется в основном для подключения высокоскоростной периферии к большим компьютерам и передает данные по волоконно-оптическому кабелю со скоростью, близкой к гигабитной, посредством избыточного кода 8В/10В. В образованный для согласования усилий в этой области Gigabit Ethernet Alliance с самого начала вошли такие флагманы отрасли, как Bay Networks, Cisco Systems и 3Com. За год своего существования количество участников Gigabit Ethernet Alliance существенно выросло и насчитывает сейчас более 100. В качестве первого варианта физического уровня был принят уровень технологии Fiber Channel, с ее кодом 8В/10В (как и в случае Fast Ethernet, когда для ускорения работ был принят отработанный физический уровень FDDI). Первая версия стандарта была рассмотрена в январе 1997 года, а окончательно стандарт 802.3z был принят 29 июня 1998 года на заседании комитета IEEE 802.3. Работы по реализации Gigabit Ethernet на витой паре категории 5 были переданы специальному комитету 802.ЗаЬ, который уже рассмотрел несколько вариантов проекта этого стандарта, причем с июля 1998 года проект приобрел достаточно стабильный характер. Окончательное принятие стандарта 802.3ab ожидается в сентябре 1999 года. Не дожидаясь принятия стандарта, некоторые компании выпустили первое оборудование Gigabit Ethernet на оптоволоконном кабеле уже к лету 1997 года. Основная идея разработчиков стандарта Gigabit Ethernet состоит в максимальном сохранении идей классической технологии Ethernet при достижении битовой скорости в 1000 Мбит/с. Так как при разработке новой технологии естественно ожидать некоторых технических новинок, идущих в общем русле развития сетевых технологий, то важно отметить, что Gigabit Ethernet, так же как и его менее скоростные собратья, на уровне протокола не будет поддерживать:

· качество обслуживания;

· избыточные связи;

· тестирование работоспособности узлов и оборудования (в последнем случае - за исключением тестирования связи порт - порт, как это делается для Ethernet l0Base-T и l0Base-F и Fast Ethernet). Все три названных свойства считаются весьма перспективными и полезными в современных сетях, а особенно в сетях ближайшего будущего. Почему же авторы Gigabit Ethernet отказываются от них? По поводу качества обслуживания коротко можно ответить так: «сила есть - ума не надо». Если магистраль сети будет работать со скоростью в 20 000 раз превышающей среднюю скорость сетевой активности клиентского компьютера и в 100 раз превышающей среднюю сетевую активность сервера с сетевым адаптером 100 Мбит/с, то о задержках пакетах на магистрали во многих случаях можно не заботиться вообще. При небольшом коэффициенте загрузки магистрали 1000 Мбит/с очереди в коммутаторах Gigabit Ethernet будут небольшими, а время буферизации и коммутации на такой скорости составляет единицы и даже доли микросекунд. Ну а если все же магистраль загрузится на достаточную величину, то приоритет чувствительному к задержкам или требовательному к средней скорости трафику можно предоставить с помощью техники приоритетов в коммутаторах - соответствующие стандарты для коммутаторов уже приняты (они будут рассматриваться в следующей главе). Зато можно будет пользоваться весьма простой (почти как Ethernet) технологией, принципы работы которой известны практически всем сетевым специалистам. Главная идея разработчиков технологии Gigabit Ethernet состоит в том, что существует и будет существовать весьма много сетей, в которых высокая скорость магистрали и возможность назначения пакетам приоритетов в коммутаторах будут вполне достаточны для обеспечения качества транспортного обслуживания всех клиентов сети. И только в тех редких случаях, когда и магистраль достаточно загружена, и требования к качеству обслуживания очень жесткие, нужно применять технологию АТМ, которая действительно за счет высокой технической сложности дает гарантии качества обслуживания для всех основных видов трафика. Избыточные связи и тестирование оборудования не будут поддерживаться технологией Gigabit Ethernet из-за того, что с этими задачами хорошо справляются протоколы более высоких уровней, например Spanning Tree, протоколы маршрутизации и т. п. Поэтому разработчики технологии решили, что нижний уровень просто должен быстро передавать данные, а более сложные и более редко встречающиеся задачи (например, приоритезация трафика) должны передаваться верхним уровням. Что же общего имеется в технологии Gigabit Ethernet по сравнению с технологиями Ethernet и Fast Ethernet?


Страница: