Общая и неорганическая химия
Рефераты >> Химия >> Общая и неорганическая химия

Накипеобразование на поверхностях нагрева. В процессе работы котла в котловой воде протекают различные физико-химические процессы, обусловливающие разрушение одних соединений и образование других. Это приводит к возникновению веществ с различной степенью растворимости. Труднорастворимые вещества выделяются из воды в виде осадка, образующего при определенных условиях накипь или шлам.

Накипью называют плотные отложения, возникающие на поверхности нагрева. К шламу относятся выпадающие вещества в виде подвижного осадка, которые могут также образовывать вторичную накипь, прикипая к поверхности труб.

Образование осадка в виде накипи или шлама происходит при наличии пересыщенного раствора, т. е. высокой концентрации солей. Испарение котловой воды, подача питательной и добавочной воды с более высокой минерализацией создают благоприятные условия для этого процесса. Произведение концентраций находящихся в растворе ионов труднорастворимого вещества называется произведением растворимости, т.е.

ПР = СКТСАН где СКТ,САН— концентрация соответственно катиона и аниона труднорастворимого соединения. Произведение концентраций при данной температуре является постоянной величиной и, если СКТСАН > ПР, происходит выпадение осадка (твердой фазы). Образующиеся в толще воды кристаллические частицы осаждаются на поверхности нагрева в виде слоя накипи или остаются во взвешенном состоянии как подвижный шлам. Накипь может появиться в результате увеличения концентрации одного из ионов, образующих труднорастворимые соединения, что является следствием химических процессов.Таким образом, низкое содержание Са в воде еще не означает, что не будет кальциевых отложений.Наибольшее влияние на процесс накипеобразования оказывают катионы Са2+ и Mg2+ и анионы С2-3, ОН-, SO2-4, SiO2-3. Определенные сочетания этих катионов и анионов в виде солей представляют собой труднорастворимые вещества. Накипеобразующими соединениями, например, являются: карбонат кальция и магния (СаСО3, MgCO3), гидрат магния (Mg(OH)2), сульфат кальция (CaSO4), силикаты кальция и магния СаSiO3, MgSiO3).

Карбонат кальция образуется в результате нагрева из бикарбоната:

Са(НСО3)2→СаСО3 +H2O+СО2.

Повышение концентрации в воде углекислоты СО2 может смещать равновесие реакции влево, т. е. ведет к образованию бикарбоната. Однако для котловой воды, где идет процесс кипения и СО2 удаляется, наиболее характерен переход Са(НСО3)2 в карбонат СаСО3.

Аналогичная реакция идет и с бикарбонатом магния при нагревании: Mg(HCO3)2 → MgCO3 + Н2О + СО2.

При нагревании воды с высокой щелочностью происходит гидролиз карбоната магния с образованием труднорастворимого соединения гидроокиси магния: MgCO3 + 2Н2О → Mg(OH)2 + H2CO3.

Карбонаты кальция образуют в котле карбонатную накипь. С повышением щелочности воды они осаждаются в грубодисперсном состоянии и входят в состав шлама.

Соединение Mg(OH)2 находится в воде преимущественно в виде шлама и может образовывать вторичную накипь (прикипание осаждающегося шлама).

Силикаты CaSiO3 и MgSiO3 в природной воде находятся в коллоидальной форме в небольшом количестве. Однако в случае образования силикатной накипи на поверхности нагрева слой загрязнения становится прочным, трудноудаляемым.

Одной из причин образования насыщенных растворов и выпадения осадка является понижение растворимости некоторых соединений при повышении температуры воды. Такие соединения имеют отрицательный коэффициент растворимости. К ним относятся СаСО3, CaSO4, Mg(OH)2, CaSiO4, MgSiO3.

Вторичную накипь могут образовывать продукты коррозии металла, заносимые в котел с питательной водой.

29 Окислительно-восстановительные реакции (ОВР), их классификация. Важнейшие окислители и восстановители. Составление уравнений ОВР по методу полуреакций. Влияние среды на протекание ОВР

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ (ОВР)

ОВР – реакции, в которых изменяются степени окисления элементов, то есть электроны переходят от одного атома или вещества (восстановителя) к другому (окислителю).

А степень окисления – это заряд, который имел бы атом, если бы все образованные им полярные связи стали ионными. Если связи действительно ионные, то с.о. совпадает с зарядом элементарного иона, например, K+F-. Если не все связи ионные, то степень окисления – это условное понятие, не имеющее строгого смысла, но полезное.

Например, реакция С + О2 = СО2 считается ОВР, т.к. в простых веществах степени окисления нулевые, а в СО2 углероду приписывается с.о. +4, а кислороду –2, хотя ионов С+4 и О-2 там нет. Считается, что при сгорании угля электроны переходят от атомов С к атомам О, но это трудно доказать экспериментально. Это пока условность.

Но во многих случаях удается провести ОВР так, что восстановитель и окислитель разделены в пространстве, и заряды передаются через проводники. Тогда можно экспериментально зарегистрировать перенос заряда (токи, напряжения) и определить, сколько именно электронов передается. ОВР становится реальным, а не условным, понятием. Такие процессы изучает ЭЛЕКТРОХИМИЯ. Подробно – в курсе ФХ, а сейчас очень кратко. Ключевое понятие электрохимии –

ЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ

Электрод – это электронный проводник (металл или полупроводник, твердый или жидкий), находящийся в контакте с электролитом, т.е. ионным проводником (раствором, расплавом или твердым). При этом на границе раздела фаз возникает скачок электрического потенциала – электродный потенциал. Почему?

1) Ионы металла могут в некотором количестве перейти в раствор, оставив электроны в металлической фазе. СХЕМА. Этому способствуют полярные молекулы растворителя, например, воды: М(тв.) + mH2O(ж.) = [M(OH2)m]n+(ж.) + ne-(тв.). В данном примере электрод заряжается отрицательно и притягивает к себе катионы, так что они могут возвращаться обратно, и наступает равновесие. Это самопроизвольный процесс хотя бы потому, что ведет к росту энтропии.

2) Ионы из электролита, как одноименные с материалом электрода, так и посторонние, могут прилипать (адсорбироваться) на поверхности металла, сообщая ему заряд и потенциал, как положительный, так и отрицательный.Абсолютное значение потенциала j невозможно измерить: если к электроизмерительному прибору (вольтметру, потенциометру) присоединить один электрод - прибор ничего не покажет, т.к. цепь не замкнута, а чтобы замкнуть ее, нужно ввести в электролит второй электрод (СХЕМА), и там возникнет свой электродный потенциал, так что прибор покажет РАЗНОСТЬ потенциалов.

Поэтому договорились: выбрать какой-то электрод за начало отсчета, принять для него j=0, а все остальные отсчитывать от него. Точно так же в механике для расчета потенциальной энергии в поле тяготения (mgh) нужно договориться, от какого уровня отсчитывать высоту h - от уровня стола, пола, земли или моря.

В качестве такого электрода принят нормальный водородный электрод. Это пластинка из платины (покрытая мелкораздробленной “платиновой чернью” для увеличения поверхности), находящаяся в растворе с активностью ионов водорода 1 моль/л (т.е. в 1 н растворе сильной кислоты) и обдуваемая водородом под давлением 1 атм. Там, на трехфазной границе тв.-ж.-газ, устанавливается равновесие 2Н+ (ж) + 2е (тв) = Н2 (г). Платина здесь - инертный электрод, служащий для подвода и отвода электронов, но не входящий в уравнение.Система из двух электродов с разными потенциалами, соединенных электролитом, называется ГАЛЬВАНИЧЕСКИМ ЭЛЕМЕНТОМ. Гальванические элементы применяются как химические источники тока, а также для измерения потенциалов - в аналитических целях и в научных исследованиях (подробнее - в конце темы).


Страница: